Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

S1

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Effect of extended π -surface and N-butyl substituents of imidazoles on the reactivity, electrochemical behaviours and biological interactions of corresponding Pt(II)-C^NC pincer carbene complexes; Exploring DFT and docking interactions.

Rajesh Bellam*^a, Daniel Omondi Onunga^{a,b}, Deogratius Jaganyi^{c,d}, Ross Robinson^a and Allen Mambanda^a

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.

^bDepartment of Chemistry, Maseno University, Maseno, Kenya.

^cSchool of Pure and Applied Sciences, Mount Kenya University, Thika, Kenya.

^dDepartment of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.

*Rajesh Bellam: rajeshchowdarybellam@gmail.com

S. No.	Content	Page No.
1.	¹ H NMR spectra of ligands (L ₁ , L ₂ , and L ₃)	S2
2.	TOF-MS spectra of ligands (L ₁ , L ₂ , and L ₃)	S3
3.	¹ H NMR spectra of Complexes (PtL₁, PtL₂, and PtL₃)	S5
4.	TOF-MS spectra of Complexes (PtL ₁ , PtL ₂ , and PtL ₃)	S6
5.	Stability study of the PtL ₁ , PtL ₂ and PtL ₃	S8
6.	Linear plots of k_{obs} versus [Nu] for the reaction of PtL ₂ and PtL ₃	S8
7.	Eyring plots for the reactions	S9
8.	Iso-kinetic plot	S9
9.	DFT optimized structure of PtL ₃	S9
10.	Effect of scan rate on the CV for 1.0 mM of PtL ₂ and PtL ₃	S10
11.	Absorption spectral changes of PtL₂ and PtL₃ with CT-DNA	S11
12.	Fluorescence emission spectral changes of EtBr in the presence of	S11
	PtL ₂ and PtL ₃	
13.	Cyclic voltammograms of PtL ₂ and PtL ₃ without and with CT-DNA	S12
14.	Relative viscosities of CT-DNA with PtL ₁ , PtL ₂ and PtL ₃	S13
15.	Absorption spectra BSA with and without PtL ₁ , PtL ₂ and PtL ₃	S13
16.	Fluorescence emission spectral changes of BSA in the presence of	S14
	PtL ₂ and PtL ₃	
17.	Docking poses of PtL ₂ and PtL ₃ in BSA	S15
18.	Summary of the k_2 at 25, 45 and 55 °C	S15
19.	DFT-calculated data for PtL ₁ , PtL ₂ and PtL ₃	S16
20.	Electrochemical potentials and current values of PtL_1 , PtL_2 and PtL_3	S16
	with and without CT-DNA	

Fig. S1: ¹H NMR spectrum of 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine; L₁ (400 MHz, (CD₃)₂SO).

Fig. S2: ¹H NMR spectrum of 2,6-bis[(3-methylbenzimidazol-1-yl)methyl]pyridine; L2 (400 MHz, (CD₃)₂SO).

Fig. S3: ¹H NMR spectrum of 2,6-bis[(3-butylimidazol -1-yl)methyl]pyridine; L₃ (400 MHz, (CD₃)₂SO).

Fig. S4: TOF-MS spectra of 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine; L1

Fig. S5: TOF-MS spectra of 2,6-bis[(3-methylbenzimidazol-1-yl)methyl]pyridine; L2

Fig. S6: TOF-MS spectra of 2,6-bis[(3-butylimidazol -1-yl)methyl]pyridine; L3

Fig. S7: ¹H NMR spectrum of 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate; **PtL**₁ (400 MHz, (CD₃)₂SO).

Fig. S8: ¹H NMR spectrum of 2,6-bis[(3-methylbenzimidazol-1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate; PtL₂ (400 MHz, (CD₃)₂SO).

Fig. S9: ¹H NMR spectrum of 2,6-bis[(3-butylimidazol -1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate, **PtL**₃ (400 MHz, (CD₃)₂SO).

Fig. S10: TOF-MS spectra of 2,6-bis[(3-methylimidazolium-1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate complex; PtL₁.

Fig. S11: TOF-MS spectra of 2,6-bis[(3-methylbenzimidazol-1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate complex; PtL₂.

Fig. S12: TOF-MS spectra of 2,6-bis[(3-butylimidazol -1-yl)methyl]pyridine platinum(II) chloride tetrafluoroborate complex; PtL₃.

Fig. S13: UV–Vis spectra of complexes PtL_1 (a), PtL_2 (b) and PtL_3 (c) in Tris-HCl/50 mM NaCl buffer (pH = 7.2) over a 24 h period. [$PtL_1/PtL_2/PtL_3$] = 5.0 x 10⁻⁵ M and T = 35 °C.

Fig. S14 Linear plots of k_{obs} versus [Nu] for the reaction of **PtL**₂ with Nu (a) and for the reactions with three Pt(II) C^NC pincer complexes (**PtL**₁, **PtL**₂ and **PtL**₃) with dmtu (b): [**PtL**₁/ **PtL**₂/ **PtL**₃] = 50 μ M, pH = 7.2 (Tris-HCl/50 mM NaCl) and T = 35 °C.

Fig. S15 Linear plots of k_{obs} versus [Nu] for the reaction of **PtL**₃ with Nu (a) and for the reactions with three Pt(II) C^NC pincer complexes (**PtL**₁, **PtL**₂ and **PtL**₃) with tmtu (b): [**PtL**₁/ **PtL**₂/ **PtL**₃] = 50 μ M, pH = 7.2 (Tris-HCl/50 mM NaCl) and T = 35 °C.

Fig. S16 Eyring plots for the substitution of chloride from PtL₁ (a), PtL₂ (b) and PtL₃ (c) by TU nucleophiles.

Fig. S17 *Iso*-kinetic plots for the substitution of chloride ligands by Nu of all the three Pt(II) C^NC pincer complexes.

Fig. S18 DFT optimized structure of PtL₃ representing chlorine *ipso* hydrogen lengths.

Fig. S19 Effect of scan rate on the CV for 1.0 mM of PtL₂ at the different scan rates from 25 to 250 mV/s.
Insets: (a) Relationship between reduction peak currents (I_{pc}) and the square root of scan rate (v); (b) linear relationship between the reduction peak potential (E_{pc}) and the logarithm of scan rate.

Fig. S20 Effect of scan rate on the CV for 1.0 mM of PtL₃ at the different scan rates from 25 to 250 mV/s.
Inset: (a) Relationship between reduction peak currents (I_{pc}) and the square root of scan rate (v); (b) linear relationship between the reduction peak potential (E_{pc})and the logarithm of scan rate.

Fig. S21 Absorption spectra of 48 μ M of **PtL**₂ (a) and **PtL**₃ (b) in 5 mM Tris-HCl/50 mM buffer at pH 7.2 upon addition of CT-DNA (0 - 40 μ M). The arrow shows the change in absorbance upon increasing the CT-DNA concentration. Inset: Wolfe-Shimer plot of [CT-DNA] versus [DNA]/($\epsilon_{a^-} \epsilon_f$).

Fig. S22 Fluorescence emission spectra of EtBr bounded to CT-DNA in the presence of $PtL_2(a)$; [EtBr] = 20.0 μ M, [CT-DNA] = 20.0 μ M and [PtL_2] = 0 - 150 μ M. The arrow shows the intensity changes upon increasing the PtL_2 complex concentration. (b): Stern-Volmer plot of I_0/I versus [Q] and (c): Scatchard plot of $\log[(I_0-I)/I]$ versus $\log[Q]$.

Fig. S23 Fluorescence emission spectra of EtBr bounded to CT-DNA in the presence of $PtL_3(a)$; [EtBr] = 20.0 μ M, [CT-DNA] = 20.0 μ M and [PtL_3] = 0-150 μ M. The arrow shows the intensity changes upon increasing the Pt_3 complex concentration. (b): Stern-Volmer plot of I_0/I versus [Q] and (c): Scatchard plot of $\log[(I_0-I)/I]$ versus $\log[Q]$.

Fig. S24 Cyclic voltammograms of 1.0 mM of PtL₂ (a) and PtL₃ (b) without and with CT-DNA at 100 mV/s.

Fig. S25 Effect of increasing amounts of **PtL**₁, **PtL**₂, **PtL**₃ and EtBr on the relative viscosities of CT-DNA in 5 mM Tris-HCl/50 mM NaCl, pH 7.2.

Fig. S26 Absorption spectra of 10 μ M BSA with and without 5 μ M of each Pt(II) C^NC pincer complex.

Fig. S27 Fluorescence emission spectra of BSA in the absence and presence of PtL₂(a); [BSA] = 11.3 μM and [PtL₂] = 0 - 20 μM. The arrow shows the intensity changes upon increasing the PtL₂ complex concentration. (b): Stern-Volmer plot of *I*₀/*I* versus [Q] and (c): Scatchard plot of log[(*I*₀-I)/*I*] versus log[Q].

Fig. S28 Fluorescence emission spectra of BSA in the absence and presence of PtL₃(a); [BSA] = 11.3 μM and [PtL₃] = 0 - 20 μM. The arrow shows the intensity changes upon increasing the PtL₃ complex concentration. (b): Stern-Volmer plot of *I*₀/*I* versus [Q] and (c): Scatchard plot of log[(*I*₀-I)/*I*] versus log[Q].

Fig. S29 The lowest binding free energy conformers obtained between $Pt(II) C^N^C$ pincer complexes (PtL_2 (a) / PtL_3 (b)) and BSA.

molecules by Nu.				
Complex	Nu	<i>k</i> ₂ x 10 ² / M ⁻¹ s ⁻¹		
		25 °C	45 °C	55 °C
PtL ₁ BF ₄	tu	2.20 ± 0.03	10.03 ± 0.08	20.96 ± 0.27
$\langle {}^{N} \rangle \xrightarrow{Pt} {}^{N} \rangle$	dmtu	0.82 ± 0.02	6.41 ± 0.05	16.81 ± 0.21
	Tmtu	0.26 ± 0.01	0.74 ± 0.02	1.17 ± 0.04
PtL ₂ BF ₄	tu	1.34 ± 0.05	8.03 ± 0.7	17.44 ± 0.25
	dmtu	0.51 ± 0.03	4.19 ± 0.04	11.51 ± 0.16
	Tmtu	0.21 ± 0.01	0.63 ± 0.02	1.05 ± 0.03
PtL ₃ BF ₄	tu	0.33 ± 0.02	0.91 ± 0.03	1.42 ± 0.6
	dmtu	0.09 ± 0.01	0.43 ± 0.2	0.81 ± 0.3
	Tmtu	0.03 ± 0.01	0.13 ± 0.2	0.25 ± 0.2

Table S1 Summary of the second order rate constants, k_2 at 25, 45 and 55 °C for the substitution of aqua molecules by Nu.

Complex	PtL ₁	PtL ₂	PtL₃			
MO energy (eV)						
I = -E _{HOMO}	6.772	6.829	6.691			
A = -E _{LUMO}	2.389	2.230	2.327			
ΔΕ _{LUMO-HOMO}	4.383	4.600	4.364			
NBO charge						
Pt ²⁺	0.242	0.261	0.246			
Cl ⁻	-0.454	-0.451	-0.453			
N ₁₌₅	-0.413	-0.415	-0.421			
N ₂₌₄	-0.430	-0.435	-0.430			
Bond lengths (Å)						
Pt-Cl	2.445	2.443	2.442			
Pt-N _{py}	2.073	2.069	2.704			
Pt-C ₁₌₂	2.048	2.046	2.050			
H····Cl	2.694	2.702	2.051			
Electronegativity (χ)	4.581	4.530	4.509			
Chemical softness (σ)	0.456	0.435	0.458			
Chemical hardness (η)	2.192	2.300	2.182			
Electrophilicity index (ω)	4.787	4.461	4.659			
Dipole moment (D)	12.705	12.368	13.722			

Table 2 DFT-calculated data for Pt(II) C^N^C pincer complexes

Table S3 Electrochemical potentials and current values of Pt(II) C^N^C pincer complexes with and withoutCT-DNA at scan rate 100 mV/s.

Complex,	E _{pc} , V		Current, A	
(1.0 mM)	0 μM DNA	75 μM DNA	0 μM DNA	75 μM DNA
PtL ₁	-0.882	-0.904	-6.87 x 10 ⁻⁵	-2.56 x 10 ⁻⁴
PtL ₂	-1.084	-1.060	-4.48 x 10 ⁻⁵	-1.92 x 10 ⁻⁴
PtL ₃	-1.050	-1.026	-1.36 x 10 ⁻⁵	-1.72 x 10 ⁻⁴