Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

> Phosphorus-nitrogen Compounds. Part 73. Dispiromono and Dispirobicyclotetraphosphazene Derivatives: Syntheses, Spectroscopic, Crystallographic and Thermal Studies

> > а

Gamze Elmas*a, Aytuğ Okumuş*a, Zeynel Kılıça, Tuncer Hökelek^b

^aDepartment of Chemistry, Ankara University, 06100 Ankara, Türkiye ^bDepartment of Physics, Hacettepe University, 06800 Ankara, Türkiye

Electronic supplementary information (ESI)

Contents

Figure S1. The ESI-MS spectra of (a) 6a and (b) 7a	2
Figure S2. (a) Experimental and (b) simulated ³¹ P { ¹ H} spectrum of the pure monocyclic 4d	3
Figure S3. The conformations of (a) the tetramer ring and (b) the five-membered spiro ring and (c)	
packing diagram of 2	4
Figure S4. The conformations of (a) the tetramer ring, (b) the five-membered spiro rings and (c)	
packing diagram of 4c	5
Figure S5. TG curves of the cyclotetraphosphazenes (2, 3, 4d and 5b)	6
Figure S6. TG curves of the cyclotetraphosphazenes (4c and 5c)	7
Section S1. ESI-MS, NMR and FTIR spectra of the compounds	8
Section S2. Single crystal X-ray structure determinations	27

Figure S1. The ESI-MS spectra of (a) 6a and (b) 7a.

Figure S2. (a) In CDCI₃, the experimental and (b) simulated ³¹P {¹H} spectrum of the pure monocyclic

4d.

(a)

(c)

Figure S3. The conformations of (a) the tetramer ring, (b) the five-membered spiro ring and (c) packing diagram of 2.

Figure S4. The conformations of (**a**) the tetramer ring, (**b**) the five-membered spiro ring and (**c**) packing diagram of **4c**.

Figure S5. TG curves of the cyclotetraphosphazenes (2, 3, 4d and 5b).

Figure S6. TG curves of the cyclotetraphosphazenes (4c and 5c).

Section S1. ESI-MS, NMR and FTIR spectra of the compounds

ESI-MS spectra of compound 3.

ESI-MS spectra of compound 4c.

ESI-MS spectra of compound 4d.

ESI-MS spectra of compound 5b.

ESI-MS spectra of compound 5c.

ESI-MS spectra of compound 4b.

³¹P NMR spectrum of compound **2.**

³¹P NMR spectrum of compound **3.**

³¹P NMR spectrum of compound **4c**.

³¹P NMR spectrum of compound **4d**.

³¹P NMR spectrum of compound **5b**.

³¹P NMR spectrum of compound **5c.**

³¹P NMR spectrum of compound **4b.**

¹H NMR spectrum of compound **2**.

¹H NMR spectrum of compound **3**.

¹H NMR spectrum of compound **4c**.

¹H NMR spectrum of compound **4d**.

¹H NMR spectrum of compound **5b**.

¹H NMR spectrum of compound **5c.**

¹H NMR spectrum of compound **4b**.

¹³C NMR spectrum of compound **2.**

¹³C NMR spectrum of compound **3**.

¹³C NMR spectrum of compound **4c**.

¹³C NMR spectrum of compound **4d**.

¹³C NMR spectrum of compound **5b**.

¹³C NMR spectrum of compound **5c.**

¹³C NMR spectrum of compound **4b**.

IR spectrum of compound 2.

IR spectrum of compound 3.

IR spectrum of compound 4c.

IR spectrum of compound 4d.

IR spectrum of compound 5b.

IR spectrum of compound 5c.

No.	Position	Intensity	No.	Position	Intensity
1	3196.43	86.7038	2	2959.23	73.1876
3	2917.77	68.121	4	2849.31	68.4145
5	1729.83	92.7712	6	1645.95	87.2157
7	1603.52	82.1488	8	1508.06	60.2675
9	1445.39	76.7794	10	1377.89	68.6557
11	1352.82	67.1778	12	1291.11	62.3416
13	1216.86	41.8935	14	1193.72	42.2143
15	1148.4	39.8204	16	1113.69	39.6788
17	1080.91	43.6013	18	1047.16	43.6733
19	1027.87	60.7533	20	1014.37	62.2738
21	941.092	53.7664	22	919.879	48.4704
23	804.171	49.5277	24	747.281	49.8641
25	717.39	54.0891	26	678.82	56.7481
27	633.501	59.5565	28	600.717	65.9007
29	556.363	58.3373	30	498.509	42.4557
31	419.442	56.2487			

IR spectrum of compound 4b.

Section S2. Single Crystal X-ray Structure Determinations

The crystallographic data were collected on a Bruker APEX II QUAZAR three-circle diffractometer diffractometer by Mo K_a radiation (λ =0.71073 Å) at T = 173(2) K (for 2) and 125(2) K (for 4c). No absorption correction was applied. The structures of 2 and 4c were solved using direct methods¹ and refined by full-matrix least-squares against F² using all data.² All non-H atoms were refined anisotropically. The molecular and packing diagrams together with the ring conformations of 2 and 4c were drawn by the ORTEP-3 program incorporated in the WinGX package.³ The H atom positions were calculated geometrically at distances of 0.93 Å (aromatic CH), 0.97 Å (CH₂) and 0.96 Å (CH₃) (in 2) and 0.95 Å (aromatic CH), 1.00 (methine CH), 0.99 Å (CH₂) and 0.98 Å (CH₃) (in 4c) from the parent C atoms; a riding model was used during the refinement process and the U_{iso}(H) values were constrained to be xU_{eq}(carrier atom), where x = 1.2 (for CH and CH₂) and x = 1.5 (for CH₃). In 4c, the NH hydrogen (H5) atom is located in a difference Fourier map, and refined freely.

References

- (1) G. M. Sheldrick, Acta Crystallogr. Sect. A., 2015a, 71, 3-8.
- (2) G. M. Sheldrick, Acta Crystallogr. Sect. C., 2015b, 71, 3-8.
- (3) L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.