Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Experimental section

Reagents and materials: All chemical reagents were purchased from commercial suppliers and used as received without further purification. Copper(II) nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99%) was purchased from Shanghai Titan Scientific Co., Ltd. Ni foam and Selenium powder (Se, 99%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Commercial NF was purchased from Suzhou Cheng Er Nuo Technology Co., Ltd. 4-nitrophenol (4-NP) and 4-aminophenol (4-AP) were obtained from Shanghai Macklin Biochemical Co., Ltd. Sodium borohydride (NaBH₄, 98%) was purchased from Aladdin Industrial Cooperation. Deionized (DI) water was homemade in the lab.

Physical characterizations:

XRD data were acquired by Brukef D8 instrument with Cu-Kα radiation. SEM measurements were carried out on a Hitachi S-4800 Scanning Electron microscope. TEM images were collected on a JEOL JEM 2100F electron microscopy. XPS spectra were recorded on a Kratos AXIS Ultra ^{DLD} X-ray photoelectron spectrometer. ¹H NMR spectra were acquired on a Bruker Avance NEO 600 MHz. Electron paramagnetic resonance (EPR) spectra were acquired on a Bruker EMXplus-6/1 spectrometer at room temperature.

Fig. S1 2D structure diagram of Cu₂(OH)₃(NO₃)

Fig. S2 SEM of (a) N,Se-CuO(0.3-350-1), (b) N,Se-CuO(0.2-350-1), (c) N,Se-CuO(0.1-350-1) and (d) N,Se-CuO(0 -350-1).

Fig. S3 SEM of (a) N,Se-CuO(0.2-250-1), (b) N,Se-CuO(0.2-300-1) and (c) N,Se-CuO(0.2-350-1).

Fig. S4 SEM of (a) N,Se-CuO(0.2-250-1), (b) N,Se-CuO(0.2-250-2) and (c) N,Se-CuO(0.2-250-3).

Fig. S5 The fitted standard curves of (a) 4-NP and (b) 4-AP.

Fig. S6 (a) Liquid chromatogram of 4-NP solution. (b) Liquid chromatogram of 4-NP solution after standing in air for 100 minutes. (c) Liquid chromatogram of 4-NP solution after adding NaBH₄ for 100 minutes. (d) Liquid chromatogram of 4-NP solution after the adding N,Se-CuO/NF catalyst for 100 minutes.

Fig. S7 Catalytic conversion efficiency of the N,Se-CuO/NF catalysts synthesized at different (a) qualities of selenium powder, (b) temperatures and (c) calcination time.

Fig. S8 Effect of TBA on catalytic reduction efficiency of N,Se-CuO/NF(0.2-250-2).

Fig. S9 (a) ¹H NMR spectrum of 4-nitrophenol, ¹H NMR (400 MHz, DMSO- d_6) δ 11.02 (s, 1H), 8.12 (d, J = 9.2 Hz, 2H), 6.94 (d, J = 9.2 Hz, 2H). (b) ¹H NMR spectrum of product, ¹H NMR (400 MHz, DMSO- d_6) δ 8.29 (s, 1H), 6.49 – 6.35 (m, 4H), 4.35 (s, 2H).

Fig. S10 EPR spectrum of CuHN, N-CuO and N,Se-CuO.

Fig. S11 The linear fitting curve of ln(k) vs. 1000/T.

Fig. S12 Recycle testing of N,Se-CuO/NF(0.2-250-2) catalyst.

Fig. S13 XRD patterns of N,Se-CuO/NF(0.2-250-2) before and after five-cycle test.

Fig. S14 SEM patterns of N,Se-CuO/NF(0.2-250-2) after five-cycle test.

Fig. S15 XPS patterns of N,Se-CuO/NF(0.2-250-2) before and after five-cycle test.

Fig. S16 The effect of concentration of 4-NP on (a) 4-NP reduction efficiency and (b) plots of ln (C_t/C_0) vs. the reaction time over N,Se-CuO/NF(0.2-250-2). The effect of concentration of NaBH₄ on (d) 4-NP reduction efficiency and (e) plots of ln (C_t/C_0) vs. the reaction time over N,Se-CuO/NF(0.2-250-2). The relationship of k with the concentration of (c) 4-NP and (f) NaBH₄.

Element	Atomic Fraction (%)	Mass Fraction (%)	
Ν	2.54	0.87	
0	45.32	17.79	
Cu	52.00	81.07	
Se	0.14	0.27	

Table S1 Element content of N,Se-CuO/NF(0.2-250-2).

Catalyst	n(NaBH ₄):	k	TOF	E_{a}	Ref.
	n(4-NP)	(min ⁻¹)	(mmol/(mg·min))	(kJ/mol)	
Hollow Porous Cu	400:1	\	7.69×10 ⁻⁴	\	1
NPs					
Cu/CuO/PET	1000:1	0.29	\	39.9	2
Cu NCs	70000:17	\	\	22.44	3
APBAs/CF-200	2000:3	2.057	5×10-5	19.2	4
Pd NSs	140:1	0.14	9.31×10 ⁻²	\	5
Cu microspheroids	102:1	0.239	1.36×10 ⁻⁵	\	6
CDs/CuO/mHA	60:1	0.254	8.33×10-6	\	7
Co@NC-MF	100:1	0.139	1.44×10 ⁻⁴	31.7	8
Fe ₃ O ₄ -Cu NCs	40:1	\	0.1	\	9
Cu ₂ O/h-BN	70:1	\	5.99×10 ⁻⁵	\	10
CuO@C	45:2	0.0151	1.17×10 ⁻⁴	31	11
GO-DAP-Ag NPs	1000:1	\	1.67×10 ⁻⁵	\	12
Ru/PC	781:1	1.29	3.55×10 ⁻⁴	39.11	13
Ag/MR	50:1	\	2.08×10^{-2}	31.17	14
Cu/Cu _x O@CN	400:1	\	3.12×10-2	55.6	15
N, Se-CuO/NF	10:1	0.353	0.247	28.23	This
					work

Table S2 Comparison of catalytic performance of N, Se-CuO/NF (0.2-250-2) and other typical catalysts for 4-NP reduction.

Reference

- J. Jiang, Y. Soo Lim, S. Park, S.-H. Kim, S. Yoon and L. Piao, *Nanoscale*, 2017, 9, 3873-3880.
- 2. A. A. Mashentseva, M. Barsbay, M. V. Zdorovets, D. A. Zheltov and O. Güven, *Nanomaterials*, 2020, **10**, 1552-1572.
- 3. P. Zhang, Y. Sui, G. Xiao, Y. Wang, C. Wang, B. Liu, G. Zou and B. Zou, *J. Mater. Chem. A*, 2013, **1**, 1632-1638.
- 4. F. Chen, X. Yan, X. Hu, R. Feng, T. Li, X. Li and G. Zhao, *Journal of Environmental Management*, 2022, **314**, 115075-115082.
- 5. K. Gu, X. Pan, W. Wang, J. Ma, Y. Sun, H. Yang, H. Shen, Z. Huang and H. Liu, *Small*, 2018, **14**, 1801812-1801819.
- 6. S. Ghosh, R. Das, I. H. Chowdhury, P. Bhanja and M. K. Naskar, *RSC Advances*, 2015, **5**, 101519-101524.
- 7. Q. Chang, W. Xu, N. Li, C. Xue, Y. Wang, Y. Li, H. Wang, J. Yang and S. Hu, *Applied Catalysis B: Environmental*, 2020, **263**, 118299-118306.
- 8. J. Liu, J. Li, P. Jian and R. Jian, *Journal of Hazardous Materials*, 2021, **403**, 123987-123999.
- 9. W. Zhao, S. Yang, C. Guo, J. Yang and Y. Liu, *Materials Chemistry and Physics*, 2021, **260**, 124144-124148.
- 10. C. Huang, W. Ye, Q. Liu and X. Qiu, ACS Applied Materials & Interfaces, 2014,

6, 14469-14476.

- 11. A. A. Kassem, H. N. Abdelhamid, D. M. Fouad and S. A. Ibrahim, *Journal of Environmental Chemical Engineering*, 2021, **9**, 104401-104410.
- 12. J. Nimita Jebaranjitham, C. Mageshwari, R. Saravanan and N. Mu, *Composites Part B: Engineering*, 2019, **171**, 302-309.
- 13. R. Ding, Q. Chen, Q. Luo, L. Zhou, Y. Wang, Y. Zhang and G. Fan, *Green Chemistry*, 2020, **22**, 835-842.
- S. Jiang, L. Wang, Y. Duan, J. An, Q. Luo, Y. Zhang, Y. Tang, J. Huang, B. Zhang, J. Liu and D. Wang, *Applied Catalysis B: Environmental*, 2021, 283, 119592-119599.
- W. Jia, F. Tian, M. Zhang, X. Li, S. Ye, Y. Ma, W. Wang, Y. Zhang, C. Meng, G. Zeng and J. Liu, *Journal of Colloid and Interface Science*, 2021, **594**, 254-264.