Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Theoretical Prediction of Negative Thermal Expansion in Cubic VF₃

Dingfeng Yang^{a,b*}, Yurou Tang^a, Junzhu Yang^a, Hongzheng Pu^a, Mingyu Pi^{c,d,*}, Yuanyuan

Lie*

^aCollege of Chemistry and Chemical Engineering, Chongqing University of Technology, 69

Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054, People's Republic of China.

^bChongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799,

People's Republic of China.

^cCollege of Engineering and Applied Sciences, Nanjing University, Nanjing 210093,

People's Republic of China.

^dCollege of Physics and Electronic Engineering, Chongqing Normal University, Chongqing

401331, People's Republic of China.

^eDepartment of Biological and Chemical Engineering, Chongqing University of Education,

Chongqing 400067, People's Republic of China.

*Corresponding author.

Dingfeng Yang^{a,b*}, Chongqing 400054, People's Republic of China.

Email address: yangxunscience@cqut.edu.cn

Mingyu Pi^{c,d,*}, Chongqing 401331, People's Republic of China.

Email address: mingyupi@cqnu.edu.cn

Yuanyuan Lie*, Chongqing 400067, People's Republic of China.

Email address: liyy@cque.edu.cn

Figure S1. The $3 \times 3 \times 3$ supercell structure of (a)VF₃ and (b)ScF₃

Figure S2. (a) Calculated band structure (b) density of states of cubic $\mathrm{VF}_3.$

(c) d-orbitals of V atom. Red dashed line indicates Fermi level.

Figure S3. Calculated thermodynamic properties of VF_3 versus temperature: (a) bulk modulus (B);

(b) heat capacities (C_p) .

Figure S4. (a) Phonon dispersion(b) NTE and unit volume versus temperature (c) Phonon mode Grüneisen parameter (d) Grüneisen parameter along high symmetry direction of cubic ScF₃

Figure S5. (a) Electron localization function (ELF) (isosurface value:0.6 born⁻³) of ScF₃, Red, brown atoms denote V and F atoms, respectively. (b) The calculated COHP of ScF₃.

Figure S6. Calculated mode Grüneisen parameters of cubic supercell $V_{27}F_{81}$ with 0 e and 1 e, respectively. (1e/f.u.: adding one electron into the supercell $V_{27}F_{81}$)

Table S1. Elastic properties of cubic VF₃.

	<i>C</i> ₁₁ (GPa)	C_{12} (GPa)	<i>C</i> ₄₄ (GPa)	B (GPa)	G (GPa)	E (GPa)
VF ₃	299.26	35.29	25.73	123.28	53.09	139.27

Table S2 Calculated Grüneisen parameters($\gamma_i)$ of cubic VF_3 at the M (0.5, 0.5, 0) and R (0.5, 0.5,

0.5) points, and compared	with isostructural	ScF ₃ and ReO ₃ .
---------------------------	--------------------	---

Compounds	M (0.5, 0.5, 0)	γι	R (0.5, 0.5, 0.5)	γ _i	Maximum NTE	References
	Frequency (cm ⁻¹)	1	Frequency (cm ⁻¹)	1	(×10 ⁻⁶ K ⁻¹)	
VF ₃	72.48	-12.53	74.47	-11.82	-6.41 (80 K)	This work
ScF ₃	34.85	-57.72	34.65	-98.81	-32.72(160 K)	This work
	34.92	-80.46	33.72	-85.50	-24.54 (90 K)	Comp.Mater.Sci.
ReO ₃	73.99	-16.39	88.19	-13.39	-1.55 (80 K)	2015,107,157-162.