Electronic Supplementary Information for

A *pacs*-type metal-organic framework with high adsorption capacity for inverse C_2H_6/C_2H_4 separation

Kuo Zhang,^a Jing-Jing Pang,^a Xin Lian,^a Zi-Han Song,^a Yue-Chao Yuan,^a Hongliang Huang,^{*b}

Zhao-Quan Yao,*c and Jian Xu*a

^aSchool of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China. Email: jxu@nankai.edu.cn

^bSchool of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China. Email: huanghongliang@tiangong.edu.cn.

^cSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China. Email: yaozq@email.tjut.edu.cn.

Fig. S1 (a) Coordination environment of Ni^{2+} ion in Ni-bodc-tpt. (b) Coordination environment of Zn^{2+} ion in Zn-adc-tpt. Hydrogen atoms are omitted, for clarity.

Fig. S2 (a and b) Cage A and B of Zn-adc-tpt. (c) View of the space-filling picture of Zn-adc-tpt along the *c* axis.

Fig. S3 (a) The horizontal distance between the μ_3 -OH of the metal trimer SBU equal to the length of *a* axis. (b) The vertical distance between the μ_3 -OH of the metal trimer SBU equal to the length of *c* axis.

Fig. S4 PXRD data of Ni-bodc-tpt (a) and Zn-adc-tpt (b)

Fig. S5 PXRD patterns of Ni-bodc-tpt (a) and Zn-adc-tpt (b) after being soaked in different organic solvents for 24 h and exposure to air for 7 days.

Fig. S6 PXRD data (a) and TGA curves (b) of the as-synthesized and activated samples of Ni-bodc-tpt.

Fig. S7 N₂ adsorption-desorption isotherm on Ni-bodc-tpt at 77 K. Inset: the pore size distribution.

Fig. S8 Virial equation fitting of C_2H_4 adsorption isotherm of Ni-bodc-tpt at 273 and 298 K respectively.

Fig. S9 Virial equation fitting of C_2H_6 adsorption isotherm of Ni-bodc-tpt at 273 and 298 K respectively.

Fig. S10 Dual-site Langmuir-Freundlich fitting of C₂H₄ adsorption isotherm at 298 K for Ni-bodc-tpt.

Fig. S11 Dual-site Langmuir-Freundlich fitting of C_2H_6 adsorption isotherm at 298 K for Ni-bodc-tpt.

Fig. S12 PXRD of Ni-bodc-tpt after breakthrough tests.

Fig. S13 Predicted adsorption sites and interactions of C_2H_4 (a) and C_2H_6 (b) in cage A of Ni-bodctpt. The blue dashed lines refer to C–H···N interactions while the purple ones refer to C–H···H interactions.

Compound	Ni-bodc-tpt		
CCDC number	2329063		
Chemical formula	$C_{48}H_{48}N_6Ni_3O_{13}$		
Crystal system	Hexagonal		
Space group	P6 ₃ /mmc		
<i>a/</i> (Å)	16.7926(6)		
$b/(\text{\AA})$	16.7926(6)		
<i>c/</i> (Å)	14.6396(9)		
$\alpha/(^{\circ})$	90		
$eta/(^{\circ})$	90		
γ/(°)	120		
<i>V</i> /(Å ³)	3575.2(3)		
Ζ	2		
$D/(g/cm^3)$	1.015		
T/K	210		
<i>F</i> (000)	1132		
Goodness-of-fit on F ²	1.173		
$R_1 [I > 2\sigma(I)]^a$	0.0689		
R_1 [all data] ^a	0.0780		
$wR_2 [I \ge 2\sigma(I)]^b$	0.2075		
wR ₂ [all data] ^b	0.2255		

Table S1 Crystal data and structure refinement parameters for Ni-bodc-tpt.

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w(F_{o}^{2})^{2}\right]^{1/2}}.$

Compound	Zn-adc-tpt		
CCDC number	2329065		
Chemical formula	$C_{66}H_{39}N_6Zn_3O_{13}$		
Crystal system	Trigonal		
Space group	<i>P</i> -31		
<i>a/</i> (Å)	16.7370(2)		
$b/(\text{\AA})$	16.7370(2)		
$c/(m \AA)$	15.8689(3)		
α/(°)	90		
β/(°)	90		
γ/(°)	120		
$V/(Å^3)$	3849.75(12)		
Ζ	2		
$D/(g/cm^3)$	1.139		
T/K	100		
F(000)	1342		
Goodness-of-fit on F ²	1.045		
$R_1 [I > 2\sigma(I)]^a$	0.0524		
R_1 [all data] ^a	0.0590		
$wR_2 [I > 2\sigma(I)]^{\mathrm{b}}$	0.1373		
wR ₂ [all data] ^b	0.1410		

Table S2 Crystal data and structure refinement parameters for Zn-adc-tpt.

 $\overline{{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w(F_{o}^{2})^{2}\right]^{1/2}}.$

MOF	C_2H_6 uptake	C_2H_4 uptake	Selectivity $(50/50 \text{ y/y})$	$Q_{\rm st}$ of C_2H_6	Ref.
Ni-bode-tpt	5.87	(IIIIIOT g) / 72	1.8	24.87	This work
	3.07	1.0	1.0	24.07	
$Fe_2(O_2)(dobdc)$	3.03	1.9	4.4	66.8	1
LIFM-63	2.89	2.07	1.56	26.5	2
Ni(bdc)(ted) _{0.5}	5.0	3.4	1.85	21.5	3
JNU-2	4.11	3.62	1.6	30	4
MUF-15	4.69	4.15	1.96	29.2	5
TKL-106	5.61	4.51	1.5	22.4	6
MIL-142A	3.8	2.9	1.5	27.2	7
$Cu(Qc)_2$	1.85	0.78	3.4	28.8	8
NUM-7	2.85	2.62	1.764	35.8	9
SNNU-40	7.54	4.91	1.57	18	10
CPM-233	7.45	6.52	1.64	27.3	11
PCN-250(Fe ₂ Co)	6.21	5.82	1.52	22.2	12

Table S3 Comparison of adsorption metrics of some benchmark C_2H_6 -selective MOFs at 298 K and 1 bar.

References

- 1. L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou and B. Chen, *Science*, 2018, **362**, 443-446.
- C. X. Chen, Z. W. Wei, T. Pham, P. C. Lan, L. Zhang, K. A. Forrest and S. Chen, *Angew. Chem. Int. Ed.*, 2021, 60, 9680–9685.
- W. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li and Z. Li, *Chem. Eng. Sci.*, 2016, 148, 275–281.
- 4. H. Zeng, X. J. Xie, M. Xie, Y. L. Huang, D. Luo, T. Wang, Y. Zhao, W. Lu and D. Li, *J. Am. Chem. Soc.*, 2019, **141**, 20390–20396.
- O. T. Qazvini, R. Babarao, Z. L. Shi, Y. B. Zhang and S. G. Telfer, J. Am. Chem. Soc., 2019, 141, 5014–5020.
- M.-H. Yu, H. Fang, H.-L. Huang, M. Zhao, Z.-Y. Su, H.-X. Nie, Z. Chang and T.-L. Hu, Small, 2023, 19, 2300821.
- 7. Y. Chen, H. Wu, D. Lv, R. Shi, Y. Chen, Q. Xia, Z. Li, Ind. Eng. Chem. Res., 2018, 57, 4063.
- R.-B. Lin, H. Wu, L. Li, X.-L. Tang, Z. Li, J. Gao, H. Cui, W. Zhou, B. Chen, J. Am. Chem. Soc., 2018, 140, 12940.
- F.-Z. Sun, S.-Q. Yang, R. Krishna, Y.-H. Zhang, Y.-P. Xia, T.-L. Hu, ACS Appl. Mater. Interfaces, 2020, 12, 6105.
- 10. Y.-P. Li, Y.-N. Zhao, S.-N. Li, D.-Q. Yuan, Y.-C. Jiang, X. Bu, M.-C. Hu, Q.-G. Zhai, *Adv. Sci.*, 2021, **8**, 2003141.
- 11. H. Yang, Y. Wang, R. Krishna, X. Jia, Y. Wang, A. N. Hong, C. Dang, H. E. Castillo, X. Bu, P. Feng, *J. Am. Chem. Soc.*, 2020, **142**, 2222.
- 12. H. Wu, Y. Chen, Y. Yuan, D. Lv, S. Tu, Z. Liu, Z. Li, Q. Xia, AIChE J., 2022, 68, e17385