Hydrogen-bonded organic framework with the extended conjugate

system for boosted photocatalytic degradation

Xiaojuan Bai*a,b, YiLin Xina,b, Tianqi Jiaa,b, Linlong Guoa,b, Wei Song a,b, Derek Hao*c

^aBeijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

^bKey Laboratory of Urban Stormwater System and Water Environment, (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China. E-mail: baixiaojuan@bucea.edu.cn; heixia.1986@163.com

^cSchool of Science, RMIT University, Melbourne, VIC 3000, Australia, haoqiangderek@gmail.com

Section S1. Chemicals and materials

All chemical reagents applied in this paper are of analytical purity.

1,2,4-Benzenetricarboxylic anhydride $(C_9H_4O_5, 99.8\%$, Aladdin), urea (H2NCONH2, 99%, Sinopharm), ammonium molybdate tetrahydrate $((NH_4)_{6}Mo_7O_{24} \cdot 4H_2O$, AR, Sinopharm), cobalt(II) chloride hexahydrate $(CoCl₂·6H₂O, AR, Sinopharm)$, hydrochloric acid (HCl, AR, Sinopharm), sodium hydroxide (NaOH, AR, Sinopharm), methanol (CH3OH, HPLC eluent, 99.8%, Macklin), formate $(CH_2O_2, 98\%$, Macklin), ethanol $(CH_3CH_2OH, 95\%$, Aladdin), tert-Butanol $(C_4H_{10}O, AR, Sinopharm)$,pbenzoquinone($C_6H_4O_2$, AR, Macklin), ethylenediamine tetraacetic acid disodium salt $(C_{10}H_{14}N_2O_8Na_2.2H_2O$, AR, Sinopharm), sulfamethoxazole $(C_{10}H_{11}N_3O_3S, 98\%$, Aladdin). Sodium hydroxide(NaOH, 97%, Aladdin), Hydrochloric acid(HCl, 37%, Aladdin).

Section S2. Photocatalytic performance test

The detection wavelength was 270 nm, and the removal rate of SMX was calculated as follows:

$$
\alpha = ((C_0 / C_1) / C_0)^* 100\% \tag{1}
$$

where α represents the degradation rate of SMX; C₀ is the concentration of sulfamethoxazole when the adsorption-desorption equilibrium was reached in the dark; C_t is the concentration of sulfamethoxazole at the time t of light. LC-MS was recorded on Ultimate 3000 UHPLC - Q Exactive liquid-mass spectrometer (Thermo Scientific, US), consisting of a Dinonex Ultimate 3000 UHPLC chromatography. Separation was accomplished using an Eclipse Plus C18 column (4.6×100) mm). Elution was performed at a flow rate of 0.3 mL min⁻¹ with 0.1 vol% formic acid aqueous solution as eluent A and ethyl hydrazine as eluent B. The separation of the analytes was achieved by a mixture solution with 80.0 vol% eluent A and 20.0 vol% eluent B, injected volume of 10.0 μl. Mass spectra analysis was operated in positive mode using a HESI source, and the mass analyzer was operated in full scan mode (m/z range 200–600).

Section S3. Electrochemical experiment details

The photocurrent measurement, Mott-Schottky (MS) plots, and Electrochemical impedance spectroscopy (EIS) were conducted on a CHI 660B electrochemical system (Shanghai, China) using a standard threeelectrode cell with a working electrode, a platinum wire counter electrode, and a standard calomel electrode (SCE) reference electrode. The electrolyte solution used was $Na₂SO₄$ (1 M). The working electrode was prepared according to the following process. Five milligrams of the asprepared sample were dispersed in $1 \text{ mL of } H_2O$, and the resulting mixture was sonicated for 30 min before drop-casting onto a 10 mm \times 20 mm indium tin oxide (ITO) glass electrode. Subsequently, the electrode was annealed at 200 °C for 300 min. Visible light irradiation was provided by MVL-210 with a UV cutoff filter. Electrochemical impedance spectroscopy (EIS) was applied to the electrode over the frequency range of 0.05 to 1×10^5 Hz with a sinusoidal ac perturbation of 5 mV.

Section S4. Calculation of the apparent rate constants

$$
\ln(C_t / C_0) = -K_{obs} t \tag{2}
$$

Where C_0 and C_t represent the SMX concentration at the initial (t=0) and time t.

Table S1. Apparent reaction rate constants of CoPcTc and its HOF material to SMX in water under visible light irradiation

Catalysts	$K_{obs}(min^{-1})$	$1/K_{obs}(min)$	\mathbf{R}^2
CoPcTc	0.00886	112.86	0.99693
HOF-CoPcTc	0.0198	50.5	0.9999

Table S2. Chemical formulas and relative molecular mass of intermediate products.

Figure S1. SEM-EDS analysis of CoPcTc.

Figure \bigoplus XPS survey spectra of CoPcTc(a) and HOF-CoPcTc (b).

Figure S3. Enlarged view of FT-IR spectra.

Figure S4. Enlarged view of TGA curves.

Figure S5. (a) N_2 sorption isotherms and (b) pore size distributions of the CoPcTc and HOF-CoPcTc.

Figure S6. UV-vis absorption spectra for CoPcTc and HOF-CoPcTc in the CIP solution.

Figure S7. EIS Nyquist plots of HOF-CoPcTc with the light on and light off under irradiation in the light (λ > 380 nm, [Na₂SO₄] = 0.1 M)

Figure S8. PL spectra of CoPcTc, HOF-CoPcTc.

Figure S9. MS spectra of SMX degradation intermediates of HOF-CoPcTc.

Figure S10. Proposed transformation pathways for SMX photocatalytic degradation.