Hydrogen-bonded organic framework with the extended conjugate

system for boosted photocatalytic degradation

Xiaojuan Bai*^{a,b}, YiLin Xin^{a,b}, Tianqi Jia^{a,b}, Linlong Guo^{a,b}, Wei Song^{a,b}, Derek Hao*^c

^aBeijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

^bKey Laboratory of Urban Stormwater System and Water Environment, (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China. E-mail: baixiaojuan@bucea.edu.cn; heixia.1986@163.com

^cSchool of Science, RMIT University, Melbourne, VIC 3000, Australia, haoqiangderek@gmail.com

Section S1. Chemicals and materials

All chemical reagents applied in this paper are of analytical purity.

1,2,4-Benzenetricarboxylic anhydride (C₉H₄O₅, 99.8%, Aladdin), urea (H₂NCONH₂, 99%, Sinopharm), ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O, AR, Sinopharm), cobalt(II) chloride hexahydrate (CoCl₂·6H₂O, AR, Sinopharm), hydrochloric acid (HCl, AR, Sinopharm), sodium hydroxide (NaOH, AR, Sinopharm), methanol (CH₃OH, HPLC eluent, 99.8%, Macklin), formate (CH₂O₂, 98%, Macklin), ethanol (CH₃CH₂OH, 95%, Aladdin), tert-Butanol (C₄H₁₀O, AR, Sinopharm),pbenzoquinone(C₆H₄O₂, AR, Macklin), ethylenediamine tetraacetic acid disodium salt(C₁₀H₁₄N₂O₈Na₂·2H₂O, AR, Sinopharm), sulfamethoxazole (C₁₀H₁₁N₃O₃S, 98%, Aladdin). Sodium hydroxide(NaOH, 97%, Aladdin), Hydrochloric acid(HCl, 37%, Aladdin).

Section S2. Photocatalytic performance test

The detection wavelength was 270 nm, and the removal rate of SMX was calculated as follows:

$$\alpha = ((C_0 / C_t) / C_0) * 100\%$$
 (1)

where α represents the degradation rate of SMX; C₀ is the concentration of sulfamethoxazole when the adsorption-desorption equilibrium was reached in the dark; C_t is the concentration of sulfamethoxazole at the time t of light. LC-MS was recorded on Ultimate 3000 UHPLC - Q Exactive liquid-mass spectrometer (Thermo Scientific, US), consisting of a Dinonex Ultimate 3000 UHPLC chromatography. Separation was accomplished using an Eclipse Plus C18 column (4.6 × 100 mm). Elution was performed at a flow rate of 0.3 mL min⁻¹ with 0.1 vol% formic acid aqueous solution as eluent A and ethyl hydrazine as eluent B. The separation of the analytes was achieved by a mixture solution with 80.0 vol% eluent A and 20.0 vol% eluent B, injected volume of 10.0 µl. Mass spectra analysis was operated in positive mode using a HESI source, and the mass analyzer was operated in full scan mode (m/z range 200–600).

Section S3. Electrochemical experiment details

The photocurrent measurement, Mott-Schottky (MS) plots, and Electrochemical impedance spectroscopy (EIS) were conducted on a CHI 660B electrochemical system (Shanghai, China) using a standard threeelectrode cell with a working electrode, a platinum wire counter electrode, and a standard calomel electrode (SCE) reference electrode. The electrolyte solution used was Na₂SO₄ (1 M). The working electrode was prepared according to the following process. Five milligrams of the asprepared sample were dispersed in 1 mL of H₂O, and the resulting mixture was sonicated for 30 min before drop-casting onto a 10 mm \times 20 mm indium tin oxide (ITO) glass electrode. Subsequently, the electrode was annealed at 200 °C for 300 min. Visible light irradiation was provided by MVL-210 with a UV cutoff filter. Electrochemical impedance spectroscopy (EIS) was applied to the electrode over the frequency range of 0.05 to 1 \times 10⁵ Hz with a sinusoidal ac perturbation of 5 mV.

Section S4. Calculation of the apparent rate constants

$$\ln(C_t / C_0) = -K_{obs} t \tag{2}$$

Where C_0 and C_t represent the SMX concentration at the initial (t=0) and time t.

Table S1. Apparent reaction rate constants of CoPcTc and its HOFmaterial to SMX in water under visible light irradiation

Catalysts	K _{obs} (min ⁻¹)	1 / K _{obs} (min)	R ²
СоРсТс	0.00886	112.86	0.99693
НОГ-СоРсТс	0.0198	50.5	0.9999

Table S2. Chemical formulas and relative molecular mass ofintermediate products.

ID	Chemical Formula	m/z	Proposed structure
SMX			
Ι	C ₆ H ₇ NO ₃ S	172	H ₂ N-S-OH
II	$C_6H_6O_3S$	159	О S O O H
III	$C_4H_6N_2O$	99	H ₂ N - NO
IV	$C_4H_4N_2O_3$	128	O ₂ N-VO
V	$C_{10}H_{11}N_3O_3S$	254	¢ o
			H ₂ N-S-N S-N O
VI	$C_7H_7N_3O_2$	199	$H_2N - \underbrace{ \begin{array}{c} 0 \\ - \\ - \\ - \\ 0 \\ 0 \\ 0 \\ \end{array} } N = C = NH$

Figure S1. SEM-EDS analysis of CoPcTc.

Figure Stress survey spectra of CoPcTc(a) and HOF-CoPcTc (b).

Figure S3. Enlarged view of FT-IR spectra.

Figure S4. Enlarged view of TGA curves.

Figure S5. (a) N_2 sorption isotherms and (b) pore size distributions of the CoPcTc and HOF-CoPcTc.

Figure S6. UV-vis absorption spectra for CoPcTc and HOF-CoPcTc in the CIP solution.

Figure S7. EIS Nyquist plots of HOF-CoPcTc with the light on and light off under irradiation in the light ($\lambda > 380$ nm, [Na₂SO₄] = 0.1 M)

Figure S8. PL spectra of CoPcTc, HOF-CoPcTc.

Figure S9. MS spectra of SMX degradation intermediates of HOF-CoPcTc.

Figure S10. Proposed transformation pathways for SMX photocatalytic degradation.