Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Dual emissive Ln(III)-Ag(I) heterometallic chains based on tris(2-pyridyl)phosphine oxide

Yuliya A. Bryleva,¹ Mariana I. Rakhmanova, Alexander V. Artem'ev, Andrey Yu. Baranov, and Ludmila A. Glinskaya

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Academician Lavrentiev Avenue, Novosibirsk 630090, Russian Federation

¹Corresponding author

E-mail address: <u>bryleva@niic.nsc.ru</u> (Yu. A. Bryleva)

Contents

Table S1. Selected bond lengths and angles for 2·3MeCN and 3·3MeCN.
Table S2. Unit cell parameters of CPs (1–4)·3MeCN measured at 150 K.
Table S3. The room-temperature photoluminescence lifetimes of CPs 1-4 before and after
irradiation at 312 nm for 3 hours7
Figure S1. FT-IR spectra of Py ₃ PO and CPs 1–4
Figure S2. TG, DTA, and DTG of CPs 1–49
Figure S3. Simulated XRPD patterns of 2.3MeCN and 3.3MeCN and experimental ones of CPs
(1-4)·3MeCN recorded at 150 K
Figure S4. Fragment of the crystal structure of 2.3MeCN11
Figure S5. View of the crystal structure of 2·3MeCN along the [100] direction12
Figure S6. View of the crystal structure of 2·3MeCN along the [010] direction13
Figure S7. View of the crystal structure of 2.3MeCN along the [001] direction14
Figure S8. Diffuse reflectance spectra of CPs 1–4 and Py ₃ PO15
Figure S9. Normalized excitation spectra of CPs 1–4 in the solid state at 300 K16
Figure S10. PL excitation and emission spectra of Py ₃ PO in the solid state at 300 K17
Figure S11. Emission spectra of CPs 1–4 recorded at $\lambda_{ex} = 320$ nm (red) and 350 nm (blue) in the
solid state at 300 K
Figure S12. CIE 1931 chromaticity diagrams demonstrating dependence of the emission color of
CPs 1–4 on the excitation wavelength
Figure S13. Kinetics of PL decay of CPs 1–4 in the solid state at 300 K20
Figure S14. Emission spectra of CPs 1–4 before and after irradiation at 312 nm for 3 hours in the
solid state at 300 K

2·3MeCN				3·3MeCN			
Bond	Bond length (Å)	Bond	Bond length (Å)	Bond	Bond length (Å)	Bond	Bond length (Å)
Eu1–O1	2.363(4)	Ag1–N1A ⁱⁱⁱ	2.494(7)x2	Tb1–O1	2.334(3)	Ag1–N1A ⁱⁱ	2.482(5)x2
Eu1–O2	2.354 (4)	Ag1–N1B ⁱⁱⁱ	2.468(7)x2	Tb1–O2	2.327(3)	Ag1–N1B ⁱⁱ	2.473(5)x2
Eu1–O11	2.450(5)	Ag1–N1C ⁱⁱⁱ	2.487(7)x2	Tb1011	2.425(3)	Ag1–N1C ⁱⁱ	2.484(5)x2
Eu1–O12	2.504(5)	Ag2–N1D ⁱ	2.503(7)x2	Tb1O12	2.481(4)	Ag2–N1D ⁱ	2.504(5)x2
Eu1–O21	2.516(7)	Ag2–N1E ⁱ	2.412(6)x2	Tb1-O21	2.491(8)	Ag2–N1E ⁱ	2.407(5)x2
Eu1–O22	2.510(6)	Ag2–N1F ⁱ	2.647(8)x2	Tb1-O21'	2.535(11)	Ag2–N1F ⁱ	2.665(6)x2
Eu1–O31	2.507(9)	Ag3–N1G	2.525(6)	Tb1–O22	2.504(11)	Ag3–N1G ⁱⁱⁱ	2.522(4)
Eu1–O31'	2.505(15)	Ag3–N1H	2.455(7)	Tb1–O22'	2.509(13)	Ag3–N1H ⁱⁱⁱ	2.456(5)
Eu1–O32	2.492(9)	Ag3–N1I	2.473(7)	Tb1-O31	2.486(7)	Ag3–N1I ⁱⁱⁱ	2.469(5)
Eu1–O32'	2.520(16)	Ag3–N1J ⁱⁱ	2.529(7)	Tb1-O31'	2.485(11)	Ag3–N1J	2.539(5)
Eu1–O41	2.557(7)	Ag3–N1K ⁱⁱ	2.518(7)	Tb1-O32	2.476(7)	Ag3–N1K	2.509(5)
Eu1–O42	2.516(6)	Ag3–N1O ⁱⁱ	2.445(7)	Tb1-O32'	2.477(12)	Ag3-N1O	2.445(5)
Eu2–O3	2.351(4)			Tb1-O41	2.547(5)		
Eu2–O4	2.361 (4)			Tb1-O42	2.496(5)		
Eu2–O51	2.488(7)			Tb2–O3	2.327(3)		
Eu2–O52	2.539(6)			Tb2–O4	2.331(3)		
Eu2–O61	2.488(10)			Tb2O51	2.473(5)		
Eu2–O61'	2.525(12)			Tb2–O52	2.521(5)		
Eu2–O62	2.533(10)			Tb2061	2.472(7)		
Eu2–O62'	2.514(13)			Tb2–O61'	2.504(10)		
Eu2–O71	2.549(11)			Tb2–O62	2.521(7)		
Eu2–O71'	2.527(12)			Tb2–O62'	2.491(11)		
Eu2–O72	2.546(13)			Tb2071	2.499(10)		
Eu2–O72'	2.549(14)			Tb2–O71'	2.519(15)		
Eu2–O81	2.474(5)			Tb2–O72	2.512(11)		
Eu2–O82	2.495(5)			Tb2–O72'	2.529(15)		
				Tb2–O81	2.445(4)		
				Tb2–O82	2.469(4)		

Table S1. Selected bond lengths and angles for 2.3MeCN and 3.3MeCN.

Angle	Angle size (°)	Angle	Angle size (°)	Angle	Angle size (°)	Angle	Angle size (°)
01–Eu1–O11	76.7(2)	N1B-Ag1-N1C	79.4(3)x2	O1-Tb1-O11	77.0(2)	N1A-Ag1-N1C	83.6(2)x2
O1–Eu1–O12	74.7(2)	N1B ⁱⁱⁱ –Ag1–N1C	94.9(2)x2	O1-Tb1-O12	74.8(2)	N1A–Ag1–N1C ⁱⁱ	100.9(2)x2
O1–Eu1–O21	69.3(2)	N1B ⁱⁱⁱ –Ag1–N1A	177.0(2)x2	O1-Tb1-O21	71.2(4)	N1A ⁱⁱ –Ag1–N1A	101.4(2)
O1–Eu1–O22	114.1(2)	N1B-Ag1-N1A	82.4(2)x2	O1-Tb1-O21'	66.5(3)	N1B-Ag1-N1A	82.1(2)x2
O1–Eu1–O31	81.2(2)	N1C-Ag1-N1A	83.5(2)x2	O1-Tb1-O22	112.5(5)	N1B–Ag1–N1A ⁱⁱ	176.5(2)x2
O1–Eu1–O31'	82.0(4)	N1C ⁱⁱⁱ –Ag1–N1A	101.9(2)x2	O1–Tb1–O22'	116.7(3)	N1B-Ag1-N1C	79.7(2)x2
O1–Eu1–O32	128.5(3)	N1A-Ag1-N1A ⁱⁱⁱ	100.4(3)	O1-Tb1-O31	81.4(2)	N1B–Ag1–N1C ⁱⁱ	95.5(2)x2
O1–Eu1–O41	69.8(2)	N1B ⁱⁱⁱ –Ag1–N1B	94.8(3)	O1-Tb1-O31'	82.2(3)	N1B ⁱⁱ –Ag1–N1B	94.4(2)
O1–Eu1–O42	118.1(2)	N1C-Ag1-N1C ⁱⁱⁱ	171.7(4)	O1–Tb1–O32	129.1(2)	N1C ⁱⁱ –Ag1–N1C	173.0(3)
O1–Eu1–O2	148.3(2)	N1D ⁱ -Ag2-N1F	106.3(2)x2	O1–Tb1–O32'	130.2(3)	N1D-Ag2-N1F	85.9(2)x2
O2-Eu1-O11	77.0(2)	N1E-Ag2-N1D ⁱ	172.5(3)x2	O1-Tb1-O41	69.4(2)	N1D-Ag2-N1F ⁱ	106.8(2)x2
O2–Eu1–O12	75.2(2)	N1D ⁱ –Ag2–N1F ⁱ	85.6(2)x2	O1-Tb1-O42	117.9(2)	N1D ⁱ –Ag2–N1D	91.8(2)
O2–Eu1–O21	116.4(2)	N1E-Ag2-N1D	82.7(2)x2	O2-Tb1-O1	148.4(1)	N1E-Ag2-N1D	82.7(1)x2
O2–Eu1–O22	67.6(2)	N1E-Ag2-N1F	78.1(2)x2	O2-Tb1-O11	76.7(1)	N1E-Ag2-N1D ⁱ	172.5(2)x2
O2-Eu1-O31	130.3(3)	N1E-Ag2-N1F ⁱ	91.4(2)x2	O2-Tb1-O12	75.3(3)	N1E-Ag2-N1F	77.9(2)x2
O2-Eu1-O31'	128.7(3)	N1D ⁱ -Ag2-N1D	91.5(3)	O2-Tb1-O21	118.0(2)	N1E–Ag2–N1F ⁱ	91.0(2)x2
O2–Eu1–O32	82.4(3)	N1E-Ag2-N1E ⁱ	103.4(3)	O2-Tb1-O21'	113.4(5)	N1E ⁱ –Ag2–N1E	103.3(2)
O2–Eu1–O32'	81.9(5)	N1F ⁱ –Ag2–N1F	163.1(3)	O2-Tb1-O22	67.0(3)	N1F ⁱ –Ag2–N1F	162.1(3)
O2-Eu1-O41	116.7(2)	N1O ⁱⁱ –Ag3–N1I	101.5(3)	O2-Tb1-O22'	70.1(5)	N1G ⁱⁱⁱ –Ag3–N1J	175.2(2)
O2–Eu1–O42	70.1(2)	N1O ⁱⁱ –Ag3–N1J ⁱⁱ	79.2(2)	O2-Tb1-O31	129.9(2)	N1H ⁱⁱⁱ –Ag3–N1G ⁱⁱⁱ	78.7(2)
O3-Eu2-O51	69.4(2)	N1O ⁱⁱ –Ag3–N1G	95.7(2)	O2-Tb1-O31'	128.5(3)	N1H ⁱⁱⁱ –Ag3–N1I ⁱⁱⁱ	81.9(1)
O3–Eu2–O52	117.0(2)	N1O ⁱⁱ –Ag3–N1K ⁱⁱ	82.2(2)	O2-Tb1-O32	81.8(2)	N1H ⁱⁱⁱ –Ag3–N1J	106.2(2)
O3-Eu2-O71	70.4(4)	N1O ⁱⁱ –Ag3–N1H	173.0(3)	O2-Tb1-O32'	81.2(3)	N1H ⁱⁱⁱ –Ag3–N1K	93.9(2)
O3–Eu2–O71'	71.3(5)	N1I–Ag3–N1J ⁱⁱ	96.8(2)	O2-Tb1-O41	116.8 (2)	N1I ⁱⁱⁱ –Ag3–N1G ⁱⁱⁱ	83.7(2)
O3–Eu2–O72	119.8(3)	N1I–Ag3–N1G	83.6(2)	O2-Tb1-O42	70.1(2)	N1I ⁱⁱⁱ –Ag3–N1J	96.9(2)
O3–Eu2–O72'	115.3(7)	N1I–Ag3–N1K ⁱⁱ	175.0(2)	O3–Tb2–O4	148.3(1)	N1I ⁱⁱⁱ –Ag3–N1K	175.0(2)
O3-Eu2-O61	79.0(2)	N1G–Ag3–N1J ⁱⁱ	174.8(3)	O3-Tb2-O51	69.4(2)	N1K–Ag3–N1G ⁱⁱⁱ	92.9(2)
O3-Eu2-O61'	80.2(3)	N1K ⁱⁱ –Ag3–N1J ⁱⁱ	87.1(2)	O3–Tb2–O52	116.5(2)	N1K-Ag3-N1J	86.8(2)
O3–Eu2–O62	125.5(3)	N1K ⁱⁱ –Ag3–N1G	92.7(2)	O3-Tb2-O61	78.9(2)	N1O-Ag3-N1G ⁱⁱⁱ	96.0(2)
O3–Eu2–O62'	126.1(4)	N1H-Ag3-N1I	81.8(2)	O3–Tb2–O61'	80.0(3)	N10–Ag3–N1H ⁱⁱⁱ	173.5(2)
O3-Eu2-O81	77.6(2)	N1H–Ag3–N1J ⁱⁱ	106.7(2)	O3-Tb2-O62	125.2(2)	N1O–Ag3–N1I ⁱⁱⁱ	101.5(2)
O3–Eu2–O82	77.5(2)	N1H–Ag3–N1G	78.5(2)	O3-Tb2-O62'	126.8(3)	N1O-Ag3-N1J	79.1(2)
O3–Eu2–O4	148.2(2)	N1H–Ag3–N1K ⁱⁱ	94.2(2)	O3-Tb2-O71	70.6(3)	N1O-Ag3-N1K	82.5(1)

O4–Eu2–O51	115.6(2)	O3–Tb2–O71'	70.9(4)	
O4–Eu2–O52	68.2(2)	O3–Tb2–O72	118.0(4)	
O4–Eu2–O61	132.1(3)	O3–Tb2–O72'	119.9(3)	
O4–Eu2–O61'	130.7(3)	O3–Tb2–O81	77.3(1)	
O4–Eu2–O62	85.9(3)	O3–Tb2–O82	77.1(1)	
O4–Eu2–O62'	85.4(3)	O4–Tb2–O51	116.3(2)	
O4–Eu2–O71	110.4(8)	O4–Tb2–O52	67.9(2)	
O4–Eu2–O71'	118.3(4)	O4–Tb2–O61	132.1(2)	
O4–Eu2–O72	70.5(3)	O4–Tb2–O61'	130.7(3)	
O4–Eu2–O72'	67.9(3)	O4–Tb2–O62	85.9 (2)	
O4–Eu2–O81	73.9(2)	O4–Tb2–O62'	84.6(3)	
O4–Eu2–O82	74.1(2)	O4–Tb2–O71	116.6(6)	
		O4–Tb2–O71'	108.7(6)	
		O4–Tb2–O72	67.5(3)	
		O4–Tb2–O72'	71.7(5)	
		O4–Tb2–O81	74.4(1)	
		O4–Tb2–O82	74.6(1)	

2·3MeCN: Symmetry code(s): (i) *x*, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iv) -*x*+3/2, *y*+1/2, -*z*+3/2. **3**·3MeCN: Symmetry code(s): (i) *x*, -*y*, -*z*+1; (ii) *x*, -*y*+1, -*z*+1; (iii) *x*, -*y*+2, -*z*+1; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2.

Compound	<i>a</i> , Å	b , Å	<i>c</i> , Å	α, °	β , °	γ, °	<i>V</i> , Å ³
1.3MeCN	16.07	29.12	38.91	90	90	90	18203
2·3MeCN	16.06	29.10	38.55	90	90	90	18015
3·3MeCN	16.07	28.93	38.86	90	90	90	18060
4·3MeCN	16.11	28.87	38.90	90	90	90	18089

Table S2. Unit cell parameters of CPs (1–4)·3MeCN measured at 150 K.

Table S3. The room-temperature photoluminescence lifetimes of CPs **1**–**4** before (τ_1) and after (τ_2) irradiation at 312 nm for 3 hours. The lifetimes were measured by monitoring the emission lines of Sm³⁺ (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$), Eu³⁺ (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$), Tb³⁺ (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), and Dy³⁺ (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$) ions at $\lambda_{ex} = 320$ nm.

Compound	1	2	3	4
τ1, μs	90	777	772	56
τ2, μ8	96	801	796	59

Figure S1. FT-IR spectra of Py₃PO and CPs 1–4.

Figure S3. Simulated XRPD patterns of **2**·3MeCN and **3**·3MeCN (red) and experimental ones (black) of CPs (**1**–**4**)·3MeCN recorded at 150 K.

Figure S4. Fragment of the crystal structure of 2·3MeCN. The longest Ag2−N bonds (*d* = 2.647 Å) are shown by dashed lines. H atoms, disordered atom positions, and solvent MeCN molecules are omitted for clarity. Color code: Eu, green; Ag, pink; C, grey; O, red; N, blue; P, orange.

Figure S5. View of the crystal structure of 2·3MeCN along the [100] direction.
H atoms, disordered atom positions, and solvent MeCN molecules are omitted for clarity.
Short contacts are shown in cyan.

Figure S6. View of the crystal structure of 2·3MeCN along the [010] direction.
H atoms, disordered atom positions, and solvent MeCN molecules are omitted for clarity.
Short contacts are shown in cyan.

Figure S7. View of the crystal structure of **2**·3MeCN along the [001] direction. H atoms, disordered atom positions, and solvent MeCN molecules are omitted for clarity.

Figure S8. Diffuse reflectance spectra of CPs **1–4** and Py₃PO presented as Kubelka-Munk function *vs.* wavelength. All measurements were performed at room temperature.

Figure S9. Normalized excitation spectra of CPs 1 ($\lambda_{reg} = 640 \text{ nm}$), 2 ($\lambda_{reg} = 615 \text{ nm}$), 3 ($\lambda_{reg} = 545 \text{ nm}$), and 4 ($\lambda_{reg} = 573 \text{ nm}$) in the solid state at 300 K.

Figure S10. PL excitation spectrum at $\lambda_{reg} = 480$ nm (*a*) and emission spectra recorded at different excitation wavelengths (*b*) of Py₃PO in the solid state at 300 K.

Figure S11. Emission spectra of CPs 1–4 recorded at $\lambda_{ex} = 320$ nm (red) and 350 nm (blue) in the solid state at 300 K.

Figure S12. CIE 1931 chromaticity diagrams demonstrating dependence of the emission color of CPs 1–4 on the excitation wavelength.

and 4 (λ_{reg} = 573 nm) in the solid state at 300 K. The PL was excited at 320 nm.

Figure S14. Emission spectra of CPs 1–4 before (red) and after (blue) irradiation at 312 nm for 3 hours recorded at $\lambda_{ex} = 320$ nm in the solid state at 300 K.