Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Unexpectedly Superior Efficiency of Chloride-directed Double Suzuki-Miyaura Cross-coupling Reaction to That of Bromide for the Synthesis of Sterically Hindered 2,7-Diaryl Fluorenes

Yu-Qing Peng, Yong-Qing Li,* Miao-Miao Liu, Chen Ni and Yu-Cai Cao*

State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. Ltd., Shanghai 200062, P. R. China E-mail: liyongqing@srici.cn, caoyc@srici.cn.

CONTENTS

1.	General Considerations	S1
2.	General procedures for Suzuki-Miyaura cross-coupling reaction	S1
3.	Characterization Data of Double Suzuki-Miyaura coupling products	S2
4.	Crystallographic data for 7	S6
5.	NMR Spectra	S10
6.	HRMS analysis reports for the compounds	S25
7.	References	S32

1. General Considerations.

All reactions were carried out under a nitrogen atmosphere unless otherwise specified. Unless otherwise noted, commercialized reagents were used without further purification. HPLC yield was determined on Shimadzu LC-20A. Elemental analysis was determined on Elementar vario micro cubo automatic element analyzer. HRMS was measured on Thermo Scientific Q Exactive HF Orbitrap-FTMS. ¹H NMR and ¹³C NMR spectra were recorded on a JEOL JNM-ECZR 500 MHz spectrometer at ambient temperature unless otherwise indicated. ¹H chemical shifts were referenced to CDCl₃ (7.26 ppm) and Tetrachloroethane (6.0 ppm), ¹³C chemical shifts were referenced to CDCl₃ (77.16 ppm) and Tetrachloroethane (73.78 ppm).¹ Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). NMR reaction controls for the optimization experiments were usually measured by diluting 25 mg of the crude reaction mixture with 0.5 mL of CDCl₃, mixed in the NMR tubes.

2. General procedures for Suzuki-Miyaura cross-coupling reaction

A mixture of 2,7-diaryl fluorenes (2.5 mmol), arylboronic acid (6.25~7.5 mmol), Pd complex catalyst (0.5~1.0 mol% of Pd loading), and base (5.0~10 mmol) was charged in a solvent (20 mL). The mixture was pumped and refilled with nitrogen three times. The resulting mixture was stirred at 80~100°C under nitrogen for 2 h and then cooled to room temperature, washed with water (200 mL), and EtOH (2×50 mL). The filtrate was concentrated in *vacuo*, dissolved in dichloromethane (50 mL), dried over sodium sulfate, and purified by crystallization at -20°C to obtain the coupling product.

3. Characterization Data of Double Suzuki-Miyaura coupling products.

2,7-diphenylfluorene (1)

Brown solid (0.66 g, 83%); ¹H NMR (500 MHz, Tetrachloroethane) δ 8.00 – 7.84 (m, 4H), 7.84 – 7.64 (m, 6H), 7.64 – 7.33 (m, 6H), 4.09 (s, 2H); ¹³C NMR (126 MHz, Tetrachloroethane) δ 144.01, 141.35, 140.52, 139.91, 128.51, 126.94, 126.91, 125.91, 123.55, 119.92, 36.97. HRMS (ESI) *m*/*z* calcd for C₂₅H₁₈Na⁺ [M+Na]⁺: 341.1306, found 341.1312. The NMR spectroscopic data matches previously reported data.²

2,7-bis(4-tert-butylbutylphenyl)fluorene (2)

White solid (0.61 g, 57%); ¹H NMR (500 MHz, Chloroform-d) δ 7.84 (d, J = 7.9 Hz, 2H), 7.78 (s, 2H), 7.63 (d, J = 5.4 Hz, 4H), 7.61 (s, 2H), 7.49 (d, J = 8.4 Hz, 4H), 4.02 (s, 2H), 1.38 (s, 18H); ¹³C NMR (126 MHz, Tetrachloroethane) δ 150.18, 143.96, 140.33, 139.65, 138.19, 126.59, 125.67, 125.41, 123.31, 119.82, 37.02, 34.24, 31.25.; HRMS (ESI) *m*/*z* calcd for C₃₃H₃₅ [M]⁺: 431.2739, found 431.2738.

2,7-bis(3,5-dimethylphenyl)fluorene (3)

White solid (0.81 g, 87%); ¹H NMR (500 MHz, Chloroform) δ 7.86 – 7.76 (m, 4H), 7.62 (dd, J = 7.9, 1.7 Hz, 2H), 7.29 (s, 4H), 7.01 (s, 2H), 4.01 (s, 2H), 2.41 (s, 12H). ¹³C NMR (126 MHz, Tetrachloroethane) δ 143.97, 141.05, 140.27, 139.71, 138.25, 128.94, 128.75, 125.99, 125.15, 125.06, 124.92, 123.73, 120.04, 36.98, 21.50, 21.41; HRMS (ESI) *m/z* calcd for C₂₉H₂₆Na⁺ [M+Na]⁺: 397.1932, found 397.1925. The NMR spectroscopic data matches previously reported data.³ **2,7-bis(3,5-di-***tert*-butylphenyl)fluorene (4)

Brown solid (0.80 g, 59%); ¹H NMR (500 MHz, Chloroform-d) δ 7.86 (d, J = 7.9 Hz, 2H), 7.78 (d, J = 0.9 Hz, 2H), 7.63 (dd, J = 7.9, 1.7 Hz, 2H), 7.50 (d, J = 1.8 Hz, 4H), 7.45 (t, J = 1.8 Hz, 2H), 4.04 (s, 2H), 1.41 (s, 36H); ¹³C NMR (126 MHz, Chloroform-d) δ 151.24, 144.16, 141.20, 141.05, 140.58, 126.49, 124.23, 121.88,

121.44, 120.18, 77.40, 77.15, 76.89, 37.22, 35.15, 31.72; HRMS (ESI) *m*/*z* calcd for C₄₁H₅₀Na⁺ [M+Na]⁺: 565.3810, found 565.3795.

2,7-bis(2-fluorophenyl)fluorene (5)

White solid (0.65 g, 73%); ¹H NMR (500 MHz, Chloroform-d) δ 7.89 (d, J = 7.9 Hz, 2H), 7.77 (d, J = 1.7 Hz, 2H), 7.61 (dt, J = 7.9, 1.7 Hz, 2H), 7.56 – 7.51 (m, 2H), 7.38 – 7.31 (m, 2H), 7.26 (d, J = 1.3 Hz, 1H), 7.25 (d, J = 1.3 Hz, 1H), 7.22 (d, J = 1.2 Hz, 1H), 7.20 (dd, J = 2.7, 1.2 Hz, 1H), 4.02 (s, 2H); ¹³C NMR (126 MHz, Chloroform-d) δ 160.99, 159.02, 143.89, 141.01, 134.57, 131.00, 129.01, 128.06, 125.89, 124.54, 120.13, 116.38, 116.20, 77.41, 77.16, 76.91, 37.19; HRMS (ESI) *m/z* calcd for C₂₅H₁₇F₂ [M]⁺:355.1298, found 355.1295.

2,7-bis(2-methylphenyl)fluorene (6)

White solid(0.82 g, 95%); ¹H NMR (500 MHz, Chloroform-d) δ 7.81 (d, J = 7.8 Hz, 2H), 7.49 (s, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.31 – 7.27 (m, 4H), 7.25 (d, J = 3.9 Hz, 2H), 3.94 (s, 2H), 2.31 (s, 6H); ¹³C NMR (126 MHz, Chloroform-d) δ 143.53, 142.41, 140.71, 140.36, 135.65, 130.59, 130.35, 130.13, 128.25, 127.40, 126.10, 126.02, 119.65, 77.53, 77.27, 77.02, 37.20, 20.85; HRMS (ESI) *m/z* calcd for C₂₇H₂₂[M]⁺: 346.1716, found 346.1713. The NMR spectroscopic data matches previously reported data.⁴

2,7-bis(2-ethylphenyl)fluorene (7)

Yellow solid (0.45 g, 48%); ¹H NMR (500 MHz, Chloroform-d) δ 7.82 – 7.26 (m, 8H), 7.25 – 7.07 (m, 6H), 3.87 (s, 2H), 2.61 (q, J = 7.6 Hz, 4H), 1.07 (t, J = 7.5 Hz, 6H); ¹³C NMR (126 MHz, Tetrachloroethane) δ 143.18, 141.69, 141.66, 140.41, 139.76, 130.03, 128.56, 127.97, 127.38, 125.92, 125.53, 119.32, 36.97, 26.18, 15.67; HRMS (ESI) *m*/*z* calcd for C₂₉H₂₆[M]⁺: 374.2029, found 374.2028. **2,7-bis(2-***iso***-propylphenyl)fluorene (8)**

Yellow solid (0.73 g, 73%); ¹H NMR (500 MHz, Chloroform-d) δ 7.85 (d, J = 7.7 Hz, 2H), 7.50 (s, 2H), 7.43 (dd, J = 7.8, 1.3 Hz, 2H), 7.39 – 7.33 (m, 4H), 7.27 (d, J = 5.5 Hz, 2H), 7.26 – 7.21 (m, 2H), 4.00 (s, 2H), 3.20 – 3.13 (m, 2H), 1.20 (d, J = 6.9 Hz, 12H); ¹³C NMR (126 MHz, Chloroform-d) δ 146.61, 143.33, 141.50, 140.74,

140.22, 130.17, 128.24, 127.75, 126.12, 125.67, 119.42, 77.41, 77.16, 76.91, 37.16, 29.56, 24.44; HRMS (ESI) *m/z* calcd for C₃₁H₃₀[M]⁺: 402.2342, found 402.2343. **2,7-bis(2,6-dimethylphenyl)fluorene (9)**

White solid (0.8 g, 85%); ¹H NMR (500 MHz, Chloroform) δ 7.91 (d, J = 7.8 Hz, 2H), 7.37 (s, 2H), 7.23 – 7.16 (m, 8H), 4.03 (s, 2H), 2.12 (s, 12H); ¹³C NMR (126 MHz, Chloroform-d) δ 143.69, 142.25, 140.18, 139.74, 136.33, 127.83, 127.42, 127.11, 125.81, 119.91, 37.14, 21.05; HRMS (ESI) *m*/*z* calcd. for C₂₉H₂₆[M]⁺: 374.2029, found 374.2027. The NMR spectroscopic data matches previously reported data.⁴

2,7-bis(2,6-dimethoxyphenyl)fluorene (10)

White solid (0.65 g, 59%); ¹H NMR (500 MHz, Chloroform-d) δ 7.85 (d, J = 7.8 Hz, 2H), 7.54 (s, 2H), 7.42 – 7.28 (m, 4H), 6.71 (d, J = 8.4 Hz, 4H), 4.00 (s, 2H), 3.77 (s, 12H); ¹³C NMR (126 MHz, Chloroform-d) δ 157.95, 143.08, 140.72, 132.29, 129.48, 128.59, 127.54, 120.12, 119.22, 104.41, 56.11, 37.18; HRMS (ESI) *m/z* calcd for C₂₉H₂₇O₄[M]⁺: 439.1909, found 439.1910.

2,7-bis(2,6-di-iso-propylphenyl)fluorene (11)

White solid (0.45 g, 37%); ¹H NMR (500 MHz, Chloroform-d) δ 7.86 (d, J = 7.6 Hz, 2H), 7.36 (s, 4H), 7.21 (dd, J = 14.7, 7.4 Hz, 6H), 4.03 (s, 2H), 2.69 (s, 4H), 1.09 (d, J = 6.9 Hz, 24H); ¹³C NMR (126 MHz, Chloroform-d) δ 147.11, 143.26, 140.12, 139.36, 128.71, 127.58, 126.58, 125.98, 123.04, 119.43, 37.21, 30.76, 24.30; HRMS (ESI) *m*/*z* calcd for C₃₇H₄₃Na⁺ [M+Na]⁺: 487.3365, found 487.3358.

2,7-di(naphthalen-1-yl)fluorene (12)

White solid (0.88 g, 85%); ¹H NMR (500 MHz, Chloroform-d) δ 8.03 (d, J = 8.4 Hz, 2H), 7.97 (dd, J = 13.7, 7.9 Hz, 4H), 7.91 (d, J = 8.1 Hz, 2H), 7.73 (s, 2H), 7.60 – 7.52 (m, 8H), 7.48 (t, J = 7.7 Hz, 2H), 4.09 (s, 2H); ¹³C NMR (126 MHz, Chloroform-d) δ 143.72, 140.75, 140.67, 139.52, 134.00, 131.92, 129.13, 128.46, 127.73, 127.16, 126.94, 126.27, 126.18, 125.93, 125.57, 119.85, 37.20. The NMR spectroscopic data

match previously reported data.² HRMS (ESI) m/z calcd for C₃₃H₂₂Na⁺[M+Na]⁺: 441.1619, found 441.1621.

2,7-bis(9-anthracenyl)fluorene (13)

White solid (1.05 g, 81%); ¹H NMR (500 MHz, Tetrachloroethane-d₂) δ 8.56 (s, 2H), 8.15 (dd, J = 24.9, 7.8 Hz, 6H), 8.00 – 7.84 (m, 4H), 7.76 (s, 2H), 7.68 – 7.38 (m, 10H), 4.24 (s, 2H); ¹³C NMR (126 MHz, Tetrachloroethane) δ 143.58, 140.75, 137.56, 137.23, 131.51, 130.43, 130.10, 128.14, 127.99, 126.79, 126.27, 125.12, 124.90, 119.65, 37.04; HRMS (ESI) *m*/*z* calcd for C₄₁H₂₆Na⁺ [M+Na]⁺: 541.1932, found 541.1926.

2,7-bis(9-phenanthrenyl)fluorene (14)

Yellow solid (0.94 g, 73%); ¹H NMR (500 MHz, Tetrachloroethane-d₂) δ 8.83 (d, J = 8.0 Hz, 2H), 8.77 (d, J = 7.8 Hz, 2H), 8.05 (t, J = 9.2 Hz, 4H), 7.97 (d, J = 7.3 Hz, 2H), 7.82 (d, J = 8.0 Hz, 4H), 7.74 (s, 4H), 7.69 (d, J = 7.4 Hz, 2H), 7.63 (dd, J = 18.3, 7.7 Hz, 4H), 4.15 (s, 2H).; ¹³C NMR (126 MHz, Tetrachloroethane) δ 143.54, 140.66, 139.52, 139.03, 131.66, 131.41, 130.72, 130.00, 128.84, 128.48, 127.27, 126.90, 126.65, 126.60, 126.36, 126.33, 126.26, 122.76, 122.40, 119.57, 37.05; HRMS (ESI) *m/z* calcd for C₄₁H₂₆Na⁺ [M+Na]: 541.1932, found 541.1935.

2-Chloro-7-(2-fluorophenyl)-fluorene (15)

Yellow solid (0.60 g, 80%); ¹H NMR (500 MHz, Chloroform-d) δ 7.82 (d, J = 7.9 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.58 (dt, J = 7.9, 1.7 Hz, 1H), 7.54 (d, J = 1.8 Hz, 1H), 7.49 (td, J = 7.8, 1.8 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.25 – 7.15 (m, 2H), 3.95 (s, 2H); ¹³C NMR (126 MHz, Tetrachloroethane) δ 158.92, 145.25, 143.29, 140.30, 139.99, 134.68, 132.69, 130.91, 130.89, 129.08, 129.01, 128.12, 127.29, 125.87, 125.84, 125.50, 124.52, 124.50, 121.00, 119.98, 116.35, 116.17, 36.94.

4. Crystallographic data for 7

Single crystal for X-ray diffraction analysis was isolated for 7 (CCDC: 2327221) by diffusing n-hexane into a solution of the compound in dichloromethane at -20°C. The crystal structure and the characteristic bond lengths and angles of 7 were determined.

Figure S-1 Molecular structure of 7 drawn with 50% probability elliposoids. Hydrogen aroms are omitted for clarity.

Tuble 5 T Crystal and structural termemer	no parametero or /
Chemical formula	$C_{29}H_{26}$
Mr (g / mol)	374.50
Crystal System	Triclinic
Space-Group	Р
Temperature (K)	193(2)
<i>a</i> (Å)	7.944(2)
b (Å)	11.109(3)
<i>c</i> (Å)	13.450(4)
α (°)	70.038(14)
β (°)	75.929(15)
γ (°)	76.156(14)
$V(Å^3)$	1066.16
Z	2
Radiation type	Ga Ka
$\mu (\text{mm}^{-1})$	0.314
Crystal size (mm ³)	$0.20 \times 0.14 \times 0.12$
F(000)	400
No. of measured	9993
No. of independent	2261
No. of observed $[I > 2\sigma(I)]$ reflections	1725
R _{int}	0.0729
$R[F^2 > 2\sigma(F^2)]$	0.1416
$wR(F^2)$	0.3521
S/GooF/GoF	1.563
No. of reflections	2261
No. of paramenters	265
No. of restrains	0
H-atom treatment	Constr
$\Delta ho_{ m max} (e { m \AA}^{-3})$	0.774
$\Delta \rho_{\min} (e \text{ Å}^{-3})$	-0.381

Table S-1 Crystal data and structural refinements parameters of 7

Number	Atom1	Atom2	Length
1	C1	C10	1.391(8)
2	C1	C20	1.40(1)
3	C1	C24	1.50(1)
4	C2	C3	1.496(8)
5	C2	C8	1.421(9)
6	C2	C16	1.37(1)
7	C3	C5	1.38(1)
8	C3	C6	1.40(1)
9	C4	C5	1.386(8)
10	C4	C7	1.397(9)
11	C4	C25	1.50(1)
12	C5	H5	0.951
13	C6	H6	0.95
14	C6	C13	1.369(9)
15	C7	C12	1.472(9)
16	C7	C13	1.39(1)
17	C8	C21	1.392(9)
18	C8	C23	1.49(1)
19	С9	C10	1.490(9)
20	С9	C14	1.40(1)
21	C9	C19	1.398(8)
22	C10	C18	1.385(9)
23	C11	C12	1.40(1)
24	C11	C19	1.370(9)
25	C11	C25	1.496(8)
26	C12	C15	1.394(8)
27	C13	H13	0.95
28	C14	H14	0.95
29	<u>C14</u>	C15	1.388(9)
30	C15	HI5	0.95
31	C16	H16	0.95
	C16	C26	1.38(1)
33	C17	H1/	0.95
25	C17	C20	1.38(1)
35	C17	U19	1.37(1)
30	C18	H18	0.95
20	C18	U10	1.38(1)
38	C19	H19 H20	0.949
40	C20	H20 H21	0.93
40	C21	C22	1.40(1)
41	C21	H22	0.95
42	C22	C26	1 38(1)
44	C22	H23A	0.99
45	C23	H23R	0.99
46	C23	C27	1.499(9)
47	C24	H24A	0.99
48	C24	H24B	0.99
49	C24	C29	1.49(1)
50	C25	H25A	0.99
51	C25	H25B	0.99
52	C26	H26	0.95
53	C27	H27A	0.98

Table S-2	The bond	length	of single	crystal	structure
				/	

54	C27	H27B	0.98
55	C27	H27C	0.979
56	C28	H28	0.95
57	C29	H29A	0.98
58	C29	H29B	0.98
59	C29	H29C	0.98

 Table S-3
 The bond Angle of the single crystal structure

Number	Atom1	Atom2	Atom3	Angle
1	C10	C1	C20	118.2(6)
2	C10	C1	C24	122.9(6)
3	C20	C1	C24	118.8(6)
4	C3	C2	C8	120.5(6)
5	C3	C2	C16	119.9(6)
6	C8	C2	C16	119.7(6)
7	C2	C3	C5	120.7(6)
8	C2	C3	C6	120.4(6)
9	C5	C3	C6	118.9(6)
10	C5	C4	C7	120.0(6)
11	C5	C4	C25	130.2(6)
12	C7	C4	C25	109.7(5)
13	C3	C5	C4	120.4(6)
14	C3	C5	H5	119.9
15	C4	C5	H5	119.8
16	C3	C6	H6	119.4
17	C3	C6	C13	121.2(6)
18	H6	C6	C13	119.4
19	C4	C7	C12	108.4(6)
20	C4	C7	C13	119.7(6)
21	C12	C7	C13	131.9(6)
22	C2	C8	C21	118.3(6)
23	C2	C8	C23	122.5(6)
24	C21	C8	C23	118.9(6)
25	C10	С9	C14	119.7(6)
26	C10	C9	C19	121.8(6)
27	C14	С9	C19	118.5(6)
28	C1	C10	C9	121.4(6)
29	C1	C10	C18	119.2(6)
30	С9	C10	C18	119.4(6)
31	C12	C11	C19	119.5(6)
32	C12	C11	C25	109.8(6)
33	C19	C11	C25	130.6(6)
34	C7	C12	C11	108.4(6)
35	C7	C12	C15	131.1(6)
36	C11	C12	C15	120.5(6)
37	C6	C13	C7	119.8(6)
38	C6	C13	H13	120.1
39	C7	C13	H13	120.1
40	<u>C9</u>	C14	H14	119.5
41	C9	C14	C15	120.9(6)
42	H14	C14	C15	119.6
43	C12	C15	C14	119,1(6)
44	C12	C15	H15	120.5
45	C14	C15	H15	120.4

46	C2	C16	H16	119
47	C2	C16	C26	121.9(7)
48	H16	C16	C26	119.1
49	H17	C17	C20	120.4
50	H17	C17	C28	120.3
51	C20	C17	C28	119.3(7)
52	C10	C18	H18	119.2
53	C10	C18	C28	121.6(7)
54	H18	C18	C28	119.2
55	С9	C19	C11	121.4(6)
56	C9	C19	H19	119.3
57	C11	C19	H19	119.3
58	Cl	C20	C17	121 9(7)
59	Cl	C20	H20	119
60	C17	C20	H20	119
61	C8	C21	H21	119.6
62	C8	C21	C22	120.8(6)
63	H21	C21	C22	119.6
64	C21	C22	Н22	120.1
65	C21	C22	C26	119.8(7)
66	H22	C22	C26	120.1
67	C8	C22	Н23 Л	100.1
68	C8	C23	1123A Ц22D	109.1
60	C8	C23	C27	112 7(6)
70		C23		107.8
70		C23	П23Б	107.8
71		C23	C27	109.1
72	П23В	C23		109
73		C24	<u> П24</u> А 1124D	109.3
74		C24	<u>П24В</u> С20	109.2
75		C24	U29	112.0(6)
/6	H24A	C24	H24B	107.9
70	П24А	C24	C29	109.2
/8	H24B	C24	C29	109.2
/9	C4	C25		103.5(5)
80	C4	C25	H25A	111
81	C4	C25	H25B	111.1
82	CII	C25	H25A	111.1
83		C25	H25B	111.1
84	H25A	C25	H25B	109
85	Cl6	C26	C22	119.5(7)
86	C16	C26	H26	120.3
87	C22	C26	H26	120.2
88	C23	<u>C27</u>	H27A	109.4
89	C23	C27	H27B	109.4
90	C23	C27	H27C	109.5
91	H27A	C27	H27B	109.5
92	H27A	C27	H27C	109.5
93	H27B	C27	H27C	109.5
94	C17	C28	C18	119.8(7)
95	C17	C28	H28	120.1
96	C18	C28	H28	120.1
97	C24	C29	H29A	109.5
98	C24	C29	H29B	109.5
99	C24	C29	H29C	109.5
100	H29A	C29	H29B	109.5

101	H29A	C29	H29C	109.5
102	H29B	C29	H29C	109.5

5. NMR Spectra

¹H and ¹³C NMR of 2,7-diphenylfluorene (1)

¹H and ¹³C NMR of 2,7-bis(4-^tbutylphenyl)fluorene (2)

¹H and ¹³C NMR of 2,7-bis(3,5-di^tbutylphenyl)fluorene (3)

¹H and ¹³C NMR of 2,7-bis(3,5-dimethylphenyl)fluorene (4)

S15

¹H and ¹³C NMR of 2,7-bis(2-methylphenyl)fluorene (6)

¹H and ¹³C NMR of 2,7-bis(2-ethylphenyl)fluorene (7)

¹H and ¹³C NMR of 2,7-bis(2-^{iso}propylphenyl)fluorene (8)

¹H and ¹³C NMR of 2,7-bis(2,6-dimethylphenyl)fluorene (9)

¹H and ¹³C NMR of 2,7-bis(2,6-di^{iso}propylphenyl)fluorene (10)

¹H and ¹³C NMR of 2,7-bis(2,6-dimethoxyphenyl)fluorene (11)

¹H and ¹³C NMR of 2,7-di(naphthalen-1-yl)fluorene (12)

¹H and ¹³C NMR of 2,7-bis(9-anthracenyl)fluorene (13)

¹H and ¹³C NMR of 2,7-bis(9-phenanthrenyl)fluorene (14)

¹H and ¹³C NMR of 2-Chloro-7-(2-fluorophenyl)-fluorene (15)

6. HRMS analysis reports for the compounds

HRMS (ESI) spectra of 2

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 3 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-29 H: 0-27 B: 0-1 Na: 0-1

20240120-1-1-Pos 102 (0.418) 1: TOF MS ES+

HRMS (ESI) spectra of 3

HRMS (ESI) spectra of 4

Page 1

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 7 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-25 H: 0-17 B: 0-1 Na: 0-1 F: 0-2 20240120-1-9-Pos 107 (0.437) 1: TOF MS ES+ 2.20e+001 355.1295 100-% 0 - m/z 354,800 354.900 355.000 355.100 355.200 355.300 355.400 Minimum: -1.550.0 Maximum: 5.0 10.0 Calc. Mass mDa 355.1298 -0.3 PPM DBE i-FIT 13.4 Conf(%) Formula n/a C25 H17 F2 Mass 355.1295 Norm -0.8 -0.316.5 n/a

HRMS (ESI) spectra of 5

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI-MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E-W2024011504

Sample Serial Number: CF26-1

Operator: Wang HY

Date: 2024/01/15

Operation Mode: AP-MALDI Positive Ion Mode

Elemental composition search on mass 346.1713

m/z= 341.1713-351.1713 m/z Theo. Delta RDB Composition Mass (ppm) equiv. 346.1713 346.1716 -0.99 17.0 C₂₇ H₂₂

HRMS (ESI) spectra of 6

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI-MS REPORT

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E-W2024011503

Sample Serial Number: CF27-1

Operator: Wang HY Da

Date: 2024/01/15

Operation Mode: AP-MALDI Positive Ion Mode

HRMS (ESI) spectra of 7

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E-W2024011502

Sample Serial Number: CF28-1

Operator: Wang HY Date: 2024/01/15

Operation Mode: AP-MALDI Positive Ion Mode

m/z= 397.2343-407.2343 m/z Theo. Delta RDB Composition Mass (ppm) equiv. 402.2343 402.2342 0.27 17.0 C₃₁ H₃₀

HRMS (ESI) spectra of 8

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution ESI-MS REPORT

Page 1

Instrument: Thermo Scientific Q Exactive HF Orbitrap-FTMS

Card Serial Number: E-W2024011501

Sample Serial Number: CF41-1

Operator: Wang HY

Date: 2024/01/15

Operation Mode: AP-MALDI Positive Ion Mode

Elemental composition search on mass 374.2027

m/z= 369.2027-379.2027 m/z Theo. Delta RDB Composition Mass (ppm) equiv. 374.2027 374.2029 -0.46 17.0 C29 H26

HRMS (ESI) spectra of 9

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 13 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-29 H: 0-27 B: 0-1 O: 0-4 Na: 0-1 20240120-1-6-Pos 93 (0.384) 1: TOF MS ES+

HRMS (ESI) spectra of 10

Single Ma Tolerance = Element pr Number of	ass Analy = 5.0 mDa rediction: O isotope pe	sis / DE ff aks us	BE: min ed for i-	= -1.5, r FIT = 3	nax = 50	0.0								
Monoisotopi 7 formula(e) Elements Us C: 0-37 H 20240120-1-5 1: TOF MS ES	Monoisotopic Mass, Even Electron Ions 7 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-37 H: 0-43 B: 0-1 Na: 0-1 20240120-1-5-Pos 331 (1.314) 1: TOF MS ES+													
100							487.33	358						3.90e+001
486	.900 48	37.000	487	100	487.200		487.300	487.400	487	.500	487.600	487.700	,,,,,,	487.800
Minimum: Maximum:		5. 0	10. 0	-1.5 50.0										
Mass 487.3358	Calc. Mass 487.3365	mDa -0.7	PPM -1.4	DBE 16.5	i-FIT 16.4	Norm n/a	Conf(%) n/a	Formula C37 H43						

HRMS (ESI) spectra of 11

HRMS (ESI) spectra of 12

Page 1

HRMS (ESI) spectra of 14

7. References

- H. E. Gottlieb, V. Kotlyar and A. Nudelman, NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities, *J Org Chem*, 1997, 62, 7512-7515.
- H. G. Alt and R. Zenk, Syndiospezifische polymerisation von propylen: 2- und 2,7-substituierte metallocenkomplex des typs (C₁₃H_{8-n}R_nCR'₂C₅H₄)MCl₂ (n = 1,2; R = alkoxy, alkyl, aryl, hal; R'=Me, Ph; M = Zr, Hf), *J.Organomet*, 1996,

Page 1

522, 39-54.

- Z. Zhou, Y. Zhao, H. Zhen, Z. Lin and Q. J. A. O. C. Ling, Poly(ethylene glycol)- and glucopyranoside-substituted N-heterocyclic carbene precursors for the synthesis of arylfluorene derivatives using efficient palladium-catalyzed aqueous Suzuki reaction, *Appl. Organomet. Chem.* 2016, 30, 924-931.
- 4. J. J. Esteb, M. Bergeron, C. N. Dormady, J. C. W. Chien and M. D. Rausch, Novel C1 symmetric zirconocenes containing substituted fluorenyl moieties for the polymerization of olefins, *J. Organomet*, 2003, **675**, 97-104.