Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Material (ESI) for NEW JOURNAL OF CHEMISTRY Electronic Supporting information

Large-scale synthesis of LiMn₂O₄ cathode materials via a

rheology-assisted solid-phase method using citric acid

Pengchao Liang, Yuanchao Li, Xiangzhen Xiao, Shumin Fan, Jingjing Ma, Jingjie Liu,

Yongqiang Dong, Yuhang Zong, Guangri Xu, Li Yang*

School of Chemistry and Chemical Engineering, Henan Institute of Science and

Technology, Xinxiang 453003, P. R. China

*Corresponding author:

E-mail address: 18738503738@163.com

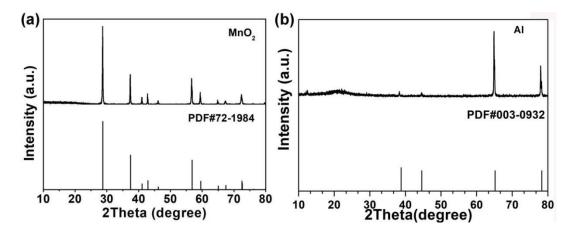


Figure. S1 XRD patterns of (a) MnO₂ raw materials and aluminum foil.

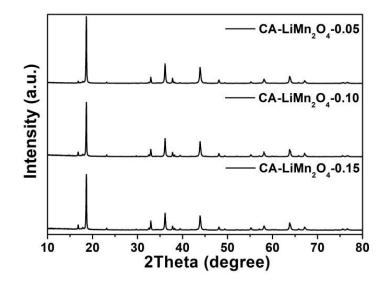


Figure. S2 XRD patterns of CA-LiMn₂O₄ with different amounts of citric acid.

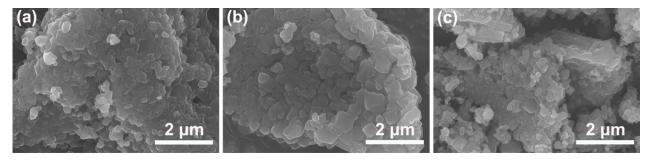


Figure. S3 SEM images of (a) $LiMn_2O_4$, (b)CA- $LiMn_2O_4$ and (c) SUC- $LiMn_2O_4$

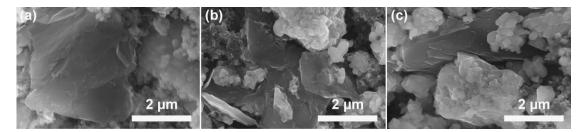


Figure S4. SEM images of (a) $LiMn_2O_4$, (b) CA- $LiMn_2O_4$ and (c) SUC- $LiMn_2O_4$

samples after 300 cycles.

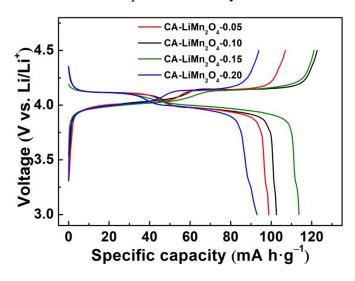


Figure. S5 Representative capacity-voltage curves of CA-LiMn₂O₄ with different

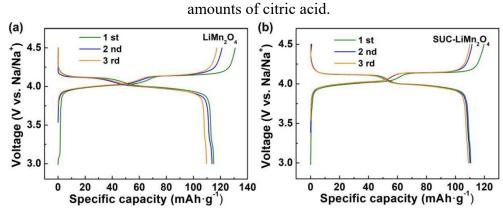


Figure. S6 Representative capacity-voltage curves of (a) $LiMn_2O_4$ and (b) SUC-LiMn_2O_4 for initial three cycles.

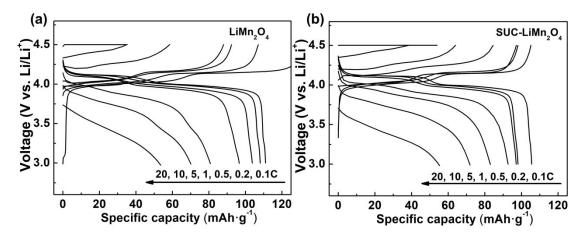


Figure. S7 Galvanostatic charge/discharge curves of (a) LiMn₂O₄ and (b) SUC-

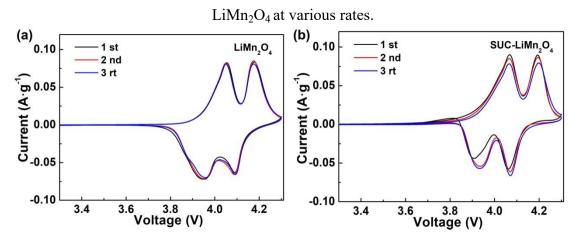


Figure. S8 The CV curves of (a) LiMn₂O₄ and (b) SUC-LiMn₂O₄ in initial three

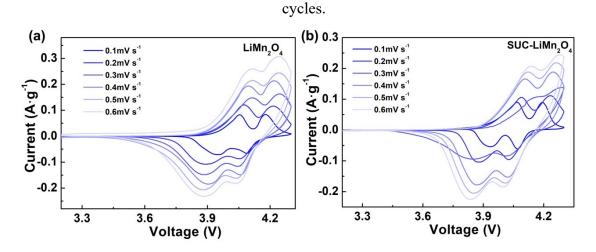


Figure. S9 The CV curves of (a) $LiMn_2O_4$ and (b) SUC- $LiMn_2O_4$ at the sweep rates of 0.1-0.6 mV s⁻¹.

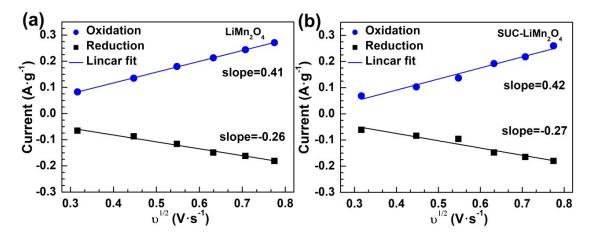


Figure. S10 (a) LiMn₂O₄ and (b) SUC-LiMn₂O₄ in the linear dependence of electrode reaction current densities on square root of scan rate.

Ref.	Structural formula	Synthesis method	LiMn ₂ O ₄ : C:PVDF	Specific capacity (mAh g ¹)
1-JES 2020 ¹	LiAl _{0.16} Mn _{0.84} O ₄	Simple combustion method	80:10:10	117 (0.1C),103(0.2C),100 (0.5C), 81 (1C), 60 (2C),
2-JAC 2021 ²	LiMn ₂ O ₄	Hydrothermal treatment	80:10:10	106 (0.1C), 101 (0.2C), 97 (0.5C), 93 (1C), 91 (2C), 79 (5C), 66.5 (10C),
3-JACS 2019 ³	LiNi _{0.5} Mn _{1.5} O ₄	surface doping	80:10:10	111(0.2C), 106 (0.5C), 102 (1C), 97 (2C), 66 (5C),
4-CI-2021 ⁴	LiMn ₂ O ₄ /LaCoO ₃	molten salt method	80:10:10	114(0.2C), 102 (0.5C), 102 (1C), 75(2C), 42 (5C),
5-ASS-2019 ⁵	LiMn ₂ O ₄ /GO	Hydrothermal treatment	80:10:10	128(0.1C), 108 (0.25C), 91 (0.5C), 80(1C),
This work	CA-LiMn ₂ O ₄	rheology- assisted solid- phase method	80:10:10	117 (0.1C), 105 (0.2C), 101 (0.5C), 95 (1C), 90 (2C), 83 (5C), 75 (10C), 63 (20C),

Table S1. Summary of electrochemical performance from LiMn₂O₄ related electrodes.

References

- Z. Cai, Y. Ma, X. Huang, X. Yan, Z. Yu, S. Zhang, G. Song, Y. Xu, C. Wen and W. Yang, *Journal of Energy Storage*, 2020, 27, 101036.
- 2. W. Xu, Y. Zheng, L. Lin, W. Lei, Z. Wang, H. Song, Y. Cheng, R. Qi, H. Peng and H. Lin, *Journal of Alloys and Compounds*, 2021, **870**, 159387.
- 3. W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng, L. Qiao, Z. Zhu, Z. Lv, Y. Zhang and X. Ge, *Journal of the American Chemical Society*, 2019, **141**, 14038-14042.
- X. Wang, H. Wang, J. Wen, Y. Tan and Y. Zeng, *Ceramics International*, 2021,
 47, 6434-6441.
- N. Kumar, J. R. Rodriguez, V. G. Pol and A. Sen, *Applied Surface Science*, 2019,
 463, 132-140.