1	Supporting Information for Publication			
2	Metal Organic Framework Coated Vesicular Nano-aggregates: An Intelligent 'Vehicles'			
3	for Sustained and Leakage Proof Release of Doxorubicin			
4	Hiral Ukani ^a , Bhagyesh Parmar ^a , Nildhara Parsana ^a ,Sugam Kumar ^b , Vinod K Aswal ^b , Omar			
5	El Seoud ^c , Naved Malek ^{a,c} *			
6	^a Ionic Liquids Research laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of			
7	Technology, Surat- 07, India			
8	^b Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India			
9	^c Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil			
10	*Corresponding Author E-mail: <u>navedmalek@chem.svnit.ac.in</u>			
11				

Figure S1: Turbidity measurement for studying the Morphological Transformation, from
 micellar aggregates to vesicular nano-aggregates.

15

17 Figure S2:Visual Images of C_{12} EMorphBr with different concentration of NaDC (1.0 mM)18- 10 mM).

20 Figure S3. Normalized absorbance plot of aqueous solution of C₁₂EMorphBr in the
 21 presence of MO with varied NaDC concentration. [2 mM- 430 nm, 5 mM- 423
 22 nm, 7.0 mM-417 nm]

23

24 Figure S4:The variation of I_1/I_3 in aqueous solution of C_{12} EMorphBr at different NaDC25concentrations.

26 Table S1. Aggregate size of the systems investigated through DLS.

Aggregates	Size D _h (nm)	PDI
C ₁₂ EMorphBr	17.00 ± 2	0.02 ± 0.01
NaDC/C ₁₂ EMorphBr (7mM)	168.2 ± 10	0.23 ± 0.05
DOX-NaDC/C ₁₂ EMorphBr	170.1 ± 10	0.31 ± 0.05

30 Figure S5. TEM images of (a) NaDC/C₁₂EMorphBr and (b) DOX-loaded
31 NaDC/C₁₂EMorphBr@ZIF-8 nanocomposite.

Element	Weight %	Net Int.
C K	47.66	338.41
N K	26.95	130.54
O K	15.17	126.49
Zn K	10.22	35.11

33

(a)

Element	Weight %	Net Int.
C K	52.80	230.76
N K	18.77	54.28
O K	15.48	92.23
Cl K	0.33	9.04
Zn K	12.61	28.92

(b)

Figure S6. EDS graph of (a) neat ZIF-8 (b) DOX- loaded NaDC/C₁₂EMorphBr@ZIF-8
nanocomposites.

41 Figure S7 Stability of the NaDC/C₁₂EMorphBr vesicular nano-aggregates as a function of
42 temperature through (a) Turbidity and (b) Absorbance measurement.

44 Figure S8. Stability of the NaDC/ C_{12} EMorphBr vesicles as a function of dilution

45

48 Figure S9. Stability of the vesicles as a function of pH through size of nanoaggregates. (a)
 49 NaDC/C₁₂EMorphBr vesicles (b) DOX loaded NaDC/C₁₂EMorphBr@ZIF-8

Time	D _h of Vesicles (nm) (-+5 nm)	D _h of nanocomposite (nm) (-+5 nm)
1 week	168.2	424.5
2 week	169	426.2
1 month	168.9	425.1
3 month	172	426.3
6 month	169	426.1

52

53

54 Figure S10. Kinetic models (a) Ritger peppas model fitting plot for DOX loaded
55 NaDC/C12EMorphBr vesicle (b) Korsmeyer-Peppas model fitting plot for DOX
56 loaded NaDC/C12EMorphBr@ZIF-8 nanocomposite in PBS buffer of pH 5, pH 7
57 environment.

Table S3. Mathematical models of mean cumulative release rate versus time of DOX loaded
 NaDC/C12EMorphBr vesicle and DOX loaded NaDC/C12EMorphBr@ZIF-8
 nanocomposite in PBS buffer of pH 5, pH 7 environment.

Model Used	рН 5	pH 7	pH 5	pH 7
	vesicle	vesicle	nanocomposite	nanocomposite

Zero-order	Q = 2.0278t + 4.1979 $R^2 = 0.881$	Q = 1.8871t + 3.601 $R^2 = 0.8964$	Q = 1.9224t + 12.625 $R^2 = 0.8241$	Q = 0.3819t + 1.6899 $R^2 = 0.9675$
First-order	$\ln Q = -0.0211t + 2.015$ 3 R ² = 0.9331	$ln Q = -0.0172t + 2.0098$ $R^{2} = 0.9469$	$ln Q = -0.0209t + 2.0079$ $R^{2} = 0.9587$	lnQ = -0.0019t + 1.9936 R ² = 0.9779
Higuchi	$Q = 14.969 t^{1/2} - 12.35$ $R^2 = 0.9062$	$Q = 13.877 t^{1/2} - 11.643$ $R^2 = 0.9149$	$Q = 14.759t^{1/2} - 8.753$ $R^2 = 0.9039$	$Q = 2.7761 t^{1/2} - 1.9902$ $R^2 = 0.9511$
Hixcon- Crowell	$Q^{1/3} = 0.0543t + 0.0087$ $R^2 = 0.9165$	$Q^{1/3} \ 0.0467t + 0.0103$ $R^2 = 0.9065$	$Q^{1/3} = 0.053t + 0.0966$ $R^2 = 0.9225$	$Q^{1/3} = 0.0064t + 0.0243$ $R^2 = 0.9744$
Korsmeyer- Peppas	$lnQ = 1.21t + 0.1091$ $R^2 = 0.9725$	$lnQ = 1.1781t + 0.1065$ $R^{2} = 0.9667$	$lnQ = 1.3859t + 0.0435$ $R^2 = 0.9943$	$lnQ = 0.765t + 0.0013$ $R^2 = 0.9975$
Ritger-peppas	$lnQ = 0.4573 ln t + 0.3048$ $R^{2} = 0.9788$	$lnQ = 0.4425 ln t + 0.2973$ $R^{2} = 0.9822$	$lnQ = 0.3125 ln t + 0.0273$ $R^{2} = 0.9122$	$lnQ = 0.3319 ln t + 0.0022$ $R^{2} = 0.9481$