Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Material

Direct biogas reforming to turquoise H₂ and carbon material in a catalytic fluidisedbed reactor

Valentin L'hospital, Leandro Goulart de Araujo, Yves Schuurman, Nolven Guilhaume, David Farrusseng*

IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR5256 CNRS-Université de Lyon, 69626 Villeurbanne, France

*Corresponding author: david.farrusseng@ircelyon.univ-lyon1.fr

Table S1: Conditions of the experimental runs and equipment setup.

Equations for WHSV

 $\begin{aligned} &WHSV\,(cm^3g^{-1}h^{-1}) = \frac{total\,mass\,flow\,of\,the\,reactants\,per\,time\,(cm^3\,h^{-1})}{total\,mass\,of\,the\,catalyst\,(g)} \\ &Q_{TP}\!\!\left(\!\frac{cm^3}{min}\!\right) = Q_{STP}\!\frac{101.3kPa}{P}\frac{T}{273K} \\ &\tau(s) = \frac{60(V_0 - V_{cat})}{Q_{TP}} \end{aligned}$

In this context, V_0 represents the volume of the empty reactor (cm³), V_{cat} stands for the overall catalyst volume in cm³, and Q_{TP} denotes the total gas flow rate at the specific reforming temperature and pressure and Q_{STP} the total flow at 273K and 101.3kPa. τ represents the residence times estimated at 950°C

Experimental conditions	
Reaction system	Dry reforming of biogas
System configuration	Catalytic fluidized bed operation
Pressure (kPa)	101.325
Temperature (°C)	750–950
Total gas flow rate (cm ³ min ⁻¹) at STP*	300
Gas flow rate ratio	$CH_4/CO_2/N_2 = 2/1/1$
Weight Hourly Space Velocity (WHSV, cm ³ g ⁻¹ h ⁻¹)	1637
Catalyst weight (g)	11
Volume of void (cm ³) = $V_0 - V_{cat}$	89.1 = 101.8–12.7
Q_{TP} (cm ³ min ⁻¹)	1344
Residence time at 950 °C (s)	3.98
Reynolds number	<40 (laminar)
*Standard Temperature and Pressure	
Electric furnace configuration	
Frequency (Hz)	50
Power (kVA)	3.6
Current (A)	16
Summary of bed characteristics	
Static bed height (cm)	5
Diameter (mm)	16
Average bed mass (g)	11
Bulk density (g cm ⁻³)	1.22

Materials	SSA (m ² g ⁻¹)	V _p (cm ³ g ⁻¹) (p/p0=0.98)
Fresh Fe/C catalyst	2	6.8
Spent Fe/C catalyst	11	26.6

Table S2: N₂ physisorption (77K) of the fresh and spent Fe/C catalyst after biogas reforming

Table S3: H₂O physisorption (293K) of the fresh and spent Fe/C catalyst (before and after biogas cracking)

Materials	Amount of adsorbed water (mg/g) at 20°C (p/p0=0.95)
Fresh Fe/C catalyst	0.7-1.7
Spent Fe/C catalyst	3.0-6.0

at 293K.

Figure S1: Scheme of the experimental set-up for biogas reforming.

Figure S2: Methane conversion as function of the temperature, Carbon balance estimated from gas phase reactants and products. Inlet flow: CH_4/N_2 1/1, 300 mL min⁻¹, 1 bar.

Figure S3: a) CH_4 and CO_2 conversion, H_2 yield and carbon balance (%) as function of time, Carbon balance estimated from gas phase reactants and products, b) H_2 productivity and H_2/CO ratio as function of time for biogas reforming, T=950°C, 1 bar, $CH_4:CO_2:N_2 2:1:1$, 300 mL min⁻¹.

Figure S4: Methane conversion, H_2 yield, carbon balance (%) and carbon formation (g h⁻¹) as function of time for methane cracking, T=950°C, 1 bar, CH₄:N₂ (1:1), 300 mL min⁻¹. Carbon balance estimated from gas phase reactants and products.

Figure S5: Quartz reactor filled with a) fresh and b) spent Fe/C catalyst. Black arrow is for catalyst bed height: 5 cm before cracking, 18 cm after biogas reforming, T=950°C, 1 bar, $CH_4:CO_2:N_2$ 2:1:1, 300 mL min⁻¹.

Figure S6: TGA of the fresh and spent Fe/C catalyst, under air, from 20 to 1000°C, heating rate 5°C min⁻¹.

Figure S7: XRD analysis of the fresh and spent Fe/C catalyst after biogas reforming.

Figure S8: Raman spectroscopy of the fresh and spent Fe/C catalyst after biogas reforming.

Figure S9: N₂ physisorption (77K) of the fresh and spent Fe/C catalyst (before and after biogas cracking).

Figure S10: H₂O physisorption (293K) of the fresh and spent Fe/C catalyst after biogas reforming.