Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Informations

Enhancing effect of metal-nitrogen-carbon nanotubes with cobalt

phthalocyanine on electrochemical reduction of CO₂

Ming Li ^{a, b}, Hong-Lin Zhu ^b, Xiao-fei Wang ^b, Zhong-Yi Li ^b, Jing-Jing Ma ^b, Ya-Jun Guo ^b,

Yue-Qing Zheng* b

^a China Certification & Inspection Group Ningbo Co., Ltd, Ningbo, Zhejiang, 315048, P. R. China

^b Chemistry Institute for Synthesis and Green Application, School of Material Science and

Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China

° ZhiEn Middle School of Ninghai, Ningbo, 315699, , P. R. China

*Corresponding author: Yue-Qing Zheng

E-mail address: <u>zhengyueqing@nbu.edu.cn</u>

1. Characterization

The Powder X-ray diffraction was carried out with a Bruker D8 Focus X-ray diffractometer with Cu-K α radiation (λ = 1.54178 Å). Scanning Electron Microscope (SEM) was performed by using a Hitachi''s new SU-70 type of thermal field emission instruments. The low and high resolution transmission electron microscopy (TEM) and the corresponding energy dispersive spectroscope mapping analyses were performed on JME-2100. The X-ray photoelectron spectroscopy (XPS) was obtained on Escalab 250Xi instrument with a monochromatic Al K α X-ray radiation source. The content of metal ions was determined by inductively coupled plasma optical emission spectrometer (ICAP 7200 ICP-OES). The liquid products were performed by Bruker 400 HZ NMR spectroscopy with TMS as an internal standard. The content of CO was analyzed by gas chromatograph (GC-2060) with flame ionization detector (FID).

2. Evaluation of Electrochemical Reduction CO₂

The working electrode was prepared by drop-drying method with 5 mg catalysts in a solution containing 120 µL Nafion solution, 400 µL isopropanol alcohol and 600 µL water. The suspension was sonicated for 30 min to obtain a homogeneous catalyst ink. Finally, 70 µL of catalyst ink were drop casted onto 1 × 0.5 cm² carbon cloth (loading: 0.3 mg cm⁻²). The electrochemical measurements were carried out with three-electrode system in 0.5 M KHCO₃ solution on CHI 760E electrochemical workstation (ChenHua, Shanghai). A platinum sheet and Ag/AgCl electrode (saturated KCl) were used as a counter electrode and the reference electrode, respectively. All the measured potentials vs. Ag/AgCl were converted to reversible hydrogen electrode (RHE): $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.197$ V. The value of faradaic efficiency (FE) was calculated according to the formula: FE = 2F × n_{CO} / Q = 2F × n_{CO} / (I × t), where F is 96485 C/mol and n_{CO} is the molar

mass of CO. The TOF value of the electrocatalyst *via* mass loading was calculated as follows: TOF(s⁻¹) $\frac{1 \cdot FE/2F}{m \cdot \omega/M_r}$ =. The ECSA was calculated by the electrochemical double-layer capacitance (C_{dl}) with the cyclic voltammetry (CV) curves in non-faradaic potential region.

Figure S1. Element mapping of CoPc/M-N-C.

Figure S2. (a) Fe 2p and (b) Ni 2p high resolution XPS spectra of catalysts.

Figure S3. CO₂ adsortpion isotherms of CoPc/M-N-C.

Figure S4 Faradic efficiency of CoPc

Figure S5. Current densities for CoPc/Fe-N-C at various potential.

Figure S6. Current densities for CoPc/Co-N-C at various potential.

Figure S7. Current densities for CoPc/Ni-N-C at various potential.

Figure S8. Liquid NMR spectrum at -0.68 V vs.RHE for CoPc/Fe-N-C.

Figure S9. CVs plots in the non-faradaic potential for CoPc/Fe-N-C.

Figure S10. CVs plots in the non-faradaic potential for CoPc/Co-N-C.

Figure S11. CVs plots in the non-faradaic potential for CoPc/Ni-N-C.

Figure S12. Current densities against the scan rates of CoPc/M-N-C.

Figure S13.The SEM image of CoPc/Ni-N-C ink on carbon cloth

Table S1 ICP-OES results	of transition	metal l	loading	amount.
--------------------------	---------------	---------	---------	---------

Catalysts	Co (wt%)	Fe (wt%)	Ni (wt%)
CoPc/Fe-N-C	0.092	0.118	
CoPc/Co-N-C	0.230		
CoPc/Ni-N-C	0.182		0.075

Table S2 Porous properties of CoPc/M-N-C

Catalysts	$S_{Langmuir} \left(m^2 \ g^{-1}\right)$	$V_p(cm^3 g^{-1})$	Pore width (nm)
CoPc/Fe-N-C	97.16	0.0476	4.27
CoPc/Co-N-C	89.00	0.0433	4.31
CoPc/Ni-N-C	87.34	0.0429	4.05

			On-set	Faradaic efficiency		Tafel		
Catalysts	Load (mg/cm²)	Produ ct	Potentials (V vs. RHE)	Potentials (V vs. RHE)	FEco	TOF (S ⁻¹)	slope (mV/de c)	Ref.
CoPc-P4VP	-	CO,H_2	-0.48	-0.73	>90%	4.8 (-0.73 V)	-	1
CoPc-A/CCG	0.12	CO, H_2	-0.49	-0.79	91.5%	5.0 (-0.6 V)	172	2
CoPc-py-CNT	-	CO, H2	-0.40	-0.53	91%	34.5 (-0.63 V)	117	3
CoPc/ZnIn ₂ S ₄	0.50	CO,H_2	-	-0.73	93%	-	141	4
CoPc/CNT	0.40	CO,H_2	-0.46	-0.63	92%	2.7 (-0.63 V)	-	5
CoPc-CN/CNT	0.40	$\rm CO, H_2$	-0.46	-0.63	98%	4.1 (-0.63 V)	-	5
CoPc/CNT-2	0.40	CO, H2	-0.40	-0.60	>90%	2.2 (-0.61 V)	-	6
CoPc/C	0.30	CO,H_2	-0.30	-0.60	>90%	3.9 (-0.70 V)	178	7
Co-N5/HNPCSs	-	$\rm CO, H_2$	-0.37	-0.57	>90%	0.14 (-0.70 V)	-	8
CoPc©Fe-N-C	-	$\rm CO, H_2$	-0.13	-0.23	>90%	-	-	9
U120-CoPc/KB	0.30	CO,H_2	-0.2	-0.7	96.4%	-	118	10
CoPc/Fe-N-C	0.30	CO,H_2	-0.28	-0.48	99%	6.33 (-0.48 V)	142	This study
CoPc/Ni-N-C	0.30	CO, H_2	-0.28	-0.58	>90%	1.15 (-0.48 V)	146	This study
CoPc/Co-N-C	0.30	$\rm CO, H_2$	-0.28	-0.68	74%	1.26 (-0.48 V)	189	This study

Table S3 Summary of electrocatalytic CO₂RR with CoPc based catalysts reported in the literature

Reference

- 1. W. W. Kramer, C. C. L. McCrory. Polymer coordination promotes selective CO₂ reduction by cobalt phthalocyanine. *Chem. Sci.*, 2016, 7, 2506 2515.
- J. Choi, P. Wagner, S. Gambhir, R. Jalili, D. R. MacFarlane, G. G. Wallace, D. L. Officer. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO₂ reduction to CO, *ACS Energy Lett.*, 2019, 4, 666-672.
- M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang, Y. Han. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO₂ electroreduction, *Appl. Catal. B Environ.*, 2019, 251, 112–118.
- 4. C. Chen, X. Sun, D. Yang, L. Lu, H. Wu, L. Zheng, P. An, J. Zhang, B. Han. Enhanced CO₂ electroreduction via interaction of dangling S bonds and Co sites in cobalt

phthalocyanine/ZnIn₂S₄ hybrids, Chem. Sci., 2019, 10, 1659–1663.

- X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures, Nat. Commun., 2017, 8, 14675.
- Z. Jiang, Y. Wang, X. Zhang, H. Zheng, X. Wang, Y. Liang, Revealing the hidden performance of metal phthalocyanines for CO₂ reduction electrocatalysis by hybridization with carbon nanotubes, *Nano Res.*, 2019, **12**, 2330–2334.
- 7. J. Ma, H. Zhu, Y. Zheng, M. Shui, An insight into anchoring of cobalt phthalocyanines onto carbon: Efficiency of the CO₂ reduction reaction, *ACS Appl. Energy Mater.*, 2021, **4**, 1442-1448.
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li. Design of single-atom Co–N₅ catalytic site: A robust electrocatalyst for CO₂ reduction with nearly 100% CO selectivity and remarkable stability, *J. Am. Chem. Soc.*, 2018, **140**, 4218-4221.
- L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang, X. Bao. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO₂ electroreduction, *Adv. Mater.*, 2019, 1903470.
- H. Zhu, L. Zhang, M. Shui, Z. Li, J. Ma, Y. Zheng, A novel manner of anchoring cobalt phthalocyanine on edge defected carbon for highly electrocatalytic CO₂ reduction, *J. Phys. Chem. Lett.*, 2023, 14, 3844–3852