Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Material

Chemical and photothermal synergistic antimicrobial treatment for enhanced wound healing based on light/pH responsive nanocomposites

Tao Gong,^{a†} Qing Ma,^{a†} Kaili Qin,^{a†} Lingxi Wei,^a Chaochao Wen,^b Huirui Zhu,^a Xiaoning Li,^a Bingmei Chang,^{a,c} Wenting Liang *^b and Rui Guo *^a

^{a.} Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001,

China; 15834151276@139.com (R. G.).

^{b.} Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006,

China; liangwt@sxu.edu.cn (W. L.).

^{c.} Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China.

[†] Tao Gong, Qing Ma and Kaili Qin contributed equally to this study.

1. Lagergren's pseudo-first-order kinetic model (Eq (1)) and Ho's pseudo-secondorder model (Eq (2))

$$\ln(q_e - q_t) = \ln(q_e) - k_1 t \tag{1}$$

$$\frac{\mathrm{t}}{q_{t}} = \frac{1}{\mathrm{k}_{2}q_{e}^{2}} + \frac{\mathrm{t}}{q_{e}} \tag{2}$$

where, in equation (1) and (2): $q_e (mg/g)$ is equilibrium adsorption capacity; $q_t (mg/g)$ is the drug loading at different time points; t (min) is the drug loading time; k_1 and k_2 are kinetic constants.

2. Langmuir model (Eq (3)) and Freundlich model (Eq (4))

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L}$$
(3)

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \tag{4}$$

where, in equation (3) and (4): $C_e (mg/L)$ is the mass concentration at the time of drug loading equilibrium; $q_m (mg/g)$ is the drug load in the saturated state; $q_e (mg/g)$ is the drug load at equilibrium; $K_L (mg/L)$ is the dissociation constant; $K_f (mL/g)$ is the Freundlich constant; 1/n is the Freundlich component factor.

Figure S1. (a) The Zeta potential; (b) FTIR spectra of GO-LM-CD, LVN, GO -LM-CD@LVN; (c)

Figure S2. (a) Standard curve for LVN; (b) Line fitting with Lagergren's pse udo-first-order model; (c) Line fitting with Ho's psedo-second-order model for adsorption kinetics.

Figure S3. (a) Adsorption isotherms of GO-LM-CD on LVN; (b) Linear fitting of Langmuiradsorption of GO-LM-CD to LVN; (c) Freundlich adsorption of G O-LM-CD to LVN.

Lagergren's pseudo-first-order kinetic model		Ho's pseudo-second-order kinetic mode		tic model	
q _e (mg/g)	$k_1 (h^{-1})$	R ²	q _e (mg/g)	$k_2 (g(mg \cdot h)^{-1})$	R ²
2.8427	0.1704	0.7228	44.5236	0.4169	1.0000

Table S1. The pharmacokinetic parameters of GO-LM-CD on LVN.

Table S2. Related parameters of Langmuir isotherm and Freundlich isotherm adsorption models for LVN by GO-LM-CD.

Langmuir isotherm Model			Freundlich isotherm Model		
$q_m(mg/g)$	$K_L(mg/mL)$	R ²	n	$K_f(mL/g)$	R ²
0.1780	3.4513	1.0000	0.39586	-0.18782	0.98042

Figure S4. (a) Standard curve for OXY; (b) Line fitting with Lagergren's pse udo-first-order model; (c) Line fitting with Ho's psedo-second-order model for adsorption kinetics.

Figure S5. (a) Adsorption isotherms of GO-LM-CD on OXY; (b) Linear fittin g of Langmuiradsorption of GO-LM-CD to OXY; (c) Freundlich adsorption of GO-LM-CD to OXY.

Lagergren's pseudo-first-order kinetic model		Ho's pseudo-second-order kinetic model			
q _e (mg/g)	$k_1 (h^{-1})$	R ²	q _e (mg/g)	$k_2 (g(mg \cdot h)^{-1})$	R ²
10.1561	0.0246	0.9177	40.0481	0.0060	0.9999

Table S3. The pharmacokinetic parameters of GO-LM-CD on OXY.

Table S4. Related parameters of Langmuir isotherm and Freundlich isotherm adsorption models for OXY by GO-LM-CD.

Langmuir isotherm Model			Freundlich isotherm Model		
$q_m (mg/g)$	$K_L(mg/mL)$	R ²	n	$K_f(mL/g)$	R ²
526.3158	1.2500	0.5947	1.4594	160.6744	0.9730

 Table S5. Scoring criteria for skin anaphylaxis.

cutaneous reaction		
erythema	edema	score
no erythema	no edema	0
mild erythema, barely visible	mild edema, barely visible	1
moderate erythema, clearly visible	moderate edema, clearly visible	2
heavy erythema	heavy edema (skin uplift of about 1 mm and clear outline)	3
severe erythema (amaranth) to slight eschar formation	severe edema (skin uplift of about 1 mm above or blisters or rupture)	4

sensitization rate (%)	edema	allergy reaction intensity	
0-8	Ι	weak sensitization	
9-28	II	mild sensitization	
29-64	III	moderate sensitization	
65-80	IV	strong sensitization	
81-100	V	very strong sensitization	

 Table S6. Evaluation criteria for skin sensitization.

Figure S6. H&E staining images of mice tissues were taken on the 14th day (Scale bar: $50 \ \mu m$)