Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

LaVO₄ with alkali metal doping for enhanced photocatalytic water splitting
LinjieYan¹, Fan Zhang³, Fan Liu², Xiaoyi Lei¹, Xuecheng Liu^{1*}, Xia Jin¹, Xiaole Zhu¹, Tingting Pei¹, Hongyu Chen¹
¹Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
²Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
*Correspondence:
³Sichuan Highway Planning, Survey, Design and Research Institute Ltd

Xuecheng Liu (E-mail: <u>liuxc@ctbu.edu.cn</u>)

Supplementray Figures and Tables

Fig. S1. XRD patterns of LaVO₄, Li-LaVO₄, Na-LaVO₄ and K-LaVO₄.

Fig. S2. XPS spectra of Na 1s of Na-LaVO₄.

Table S1. Comparison of photocatalytic effects of vanadate.

Photocatalysts	Co-catalysts	Light	H ₂ activity	Reference
Na-LaVO ₄	0.75wt%Pt	$\lambda \ge 420 \text{ nm}, 300 \text{W}$	2.83 µmol/h/g	In this work
LaVO ₄	$0.5 \text{ M} \text{ Na}_2\text{S}$	$\lambda \ge 420$ nm, 300W	8 μmol/h ²	[1]
CaTaO ₂ N	RhCrOy	$\lambda \ge 420$ nm, 300W	0.15 µmol/h ³	[2]
SrTaO ₂ N	1wt% Pt	$\lambda \ge 420$ nm, 300W	0.9 µmol/h ⁴	[3]
C_3N_4	0.75wt% Pt	$\lambda \ge 420$ nm, 300W	3.13 µmol/h/g ⁵	[4]
NCDs/DCN		$\lambda \ge 420 \text{ nm}, 300 \text{W}$	3.7 µmol/h/g	[5]
NiO/g-C ₃ N ₄		$\lambda \ge 420 \text{ nm}, 300 \text{W}$	30 µmol/h/g	[6]

References

1. Veldurthi, N. K.; Eswar, N. K.; Singh, S. A.; Madras, G., Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator. Applied Catalysis B: Environmental 2018, 220, 512-523.

2. Xu, J.; Pan, C.; Takata, T.; Domen, K., Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chemical Communications 2015, 51, (33), 7191-7194.

3. Wang, Y.; Wei, S.; Xu, X., SrTaO2N-CaTaO2N solid solutions as efficient visible light active photocatalysts for water oxidation and reduction. Applied Catalysis B: Environmental 2020,

263, 118315.

4. Liu, X.; Yan, L.; Hu, X.; Feng, H.; Guo, B.; Ha, X.; Xu, H., Facile synthesis of B and P doped g-C3N4 for enhanced synergetic activity between photocatalytic water splitting and BPA degradation. International Journal of Hydrogen Energy 2023, 48, (35), 13181-13188.

5 H. Liu, J. Liang, S. Fu, L. Li, J. Cui, P. Gao, F. Zhao, J. Zhou, N doped carbon quantum dots modified defect-rich g-C3N4 for enhanced photocatalytic combined pollutions degradation and hydrogen evolution. Colloids Surf. A Physicochem. Eng. Asp. 591(2020), 124552.

6. Y. Fu, C.A. Liu, C. Zhu, H. Wang, Y. Dou, W. Shi, M. Shao, H. Huang, Y. Liu, Z. Kang, High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting. Inorg. Chem. Front. 5(2018), 1646-1652.