Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Syntheses of a series of $BaCu_{2-x}Ag_xSe_2$ (x = 0 - 1.0) selenides and evaluation of

their thermoelectric properties

Swati, Sweta Yadav, Omair Shahid, and Jai Prakash*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India

Electronic Supplementary Information (ESI)

Fig. SI1: The EDX spectra collected for (a) the x = 0, (b) x = 0.22, (c) x = 0.43, and (d) x = 0.8 crystals used for single crystal X-ray diffraction studies.

Fig. SI2: The SEM micrographs for the fractured surfaces of the pellets of (**a-c**) BaCu₂Se₂, (**d-f**) BaCu_{1.5}Ag_{0.5}Se₂, and (**g-i**) BaCuAgSe₂ samples after thermal conductivity studies.

Fig. SI3: The EDX elemental mapping images for the pellets of (a) $BaCu_2Se_2$, (b) $BaCu_{1.5}Ag_{0.5}Se_2$, and (c) $BaCuAgSe_2$ samples after thermal conductivity measurements.

Fig. SI4: A comparison of the PXRD patterns for the polycrystalline $BaCu_2Se_2$, $BaCu_{0.5}Ag_{0.5}Se_2$, and $BaCuAgSe_2$ samples before and after thermal conductivity studies. The PXRD patterns marked with (a), (c), and (e) labels correspond to the patterns after the thermal conductivity studies, whereas (b), (d), and (f) are the patterns of assynthesized samples shown for reference.

Fig. SI5: (a) The Le-Bail refinement plots of the PXRD patterns for the polycrystalline $BaCu_{2-x}Ag_xSe_2$ (x = 0, 0.25, 0.50, 0.75, and 1.0) samples at RT and (b) the PXRD patterns for the $BaCu_{2-x}Ag_xSe_2$ samples from 2θ range of 25° to 35° showing the peak shift with increase in the Ag concentration.

Fig. SI6: The refined unit cell parameters (Å) of the polycrystalline $BaCu_{2-x}Ag_xSe_2$ (x = 0, 0.25, 0.51, 0.75, 1.0) samples as a function of Ag content (x).

Fig. SI7: (a) The experimental PXRD patterns of the products of the reactions with the loaded compositions of $BaCu_{2-x}Ag_xSe_2$ (x = 1.25, 1.375, and 1.5) and (**b**) $BaAg_2Se_2$. These figures also contain theoretical PXRD patterns of the $BaCu_{1.20(1)}Ag_{0.80(1)}Se_2$, Ag_2Se_1 , $BaSe_2$ and $Ba_2Ag_4Se_5$.³

Table SI1: The atomic displacement parameters (Å²) for the BaCu_{2-x}Ag_xSe₂ (x = 0, 0.22, 0.43, 0.51, and 0.80) structures.

Atom	U^{11}	U^{22}	U^{33}	U ¹²	U^{13}	U^{23}				
BaCu ₂ Se ₂										
Bal	0.01194(18)	0.00785(17)	0.00872(18)	0.000	0.00063(12)	0.000				
Cu1	0.0199(4)	0.0139(4)	0.0174(4)	0.000	0.0047(3)	0.000				
Cu2	0.0144(4)	0.0202(4)	0.0158(4)	0.000	-0.0008(3)	0.000				
Se1	0.0089(3)	0.0073(3)	0.0078(3)	0.000	0.0003(2)	0.000				

Se2	0.0105(3)	0.0077(3)	0.0078(3)	0.000	0.0001(2)	0.000				
$BaCu_{1.78(1)}Ag_{0.22(1)}Se_2$										
Bal	0.0139(2)	0.0099(2)	0.0103(2)	0.000	0.00043(15)	0.000				
Cu1/Ag1	0.0211(5)	0.0167(5)	0.0201(6)	0.000	0.0055(4)	0.000				
Cu2/Ag2	0.0163(4)	0.0245(5)	0.0173(6)	0.000	-0.0013(3)	0.000				
Se1	0.0140(3)	0.0120(3)	0.0096(4)	0.000	0.0007(3)	0.000				
Se2	0.0129(3)	0.0126(3)	0.0138(4)	0.000	0.0012(3)	0.000				
$BaCu_{1.57(1)}Ag_{0.43(1)}Se_{2}$										
Bal	0.0174(2)	0.01122(19)	0.01131(19)	0.000	0.00063(12)	0.000				
Cu1/Ag1	0.0247(4)	0.0184(4)	0.0236(4)	0.000	0.0056(3)	0.000				
Cu2/Ag2	0.0192(4)	0.0256(4)	0.0185(4)	0.000	-0.0015(3)	0.000				
Se1	0.0201(3)	0.0151(3)	0.0108(3)	0.000	0.0014(2)	0.000				
Se2	0.0162(3)	0.0139(3)	0.0175(3)	0.000	0.0023(2)	0.000				
$BaCu_{1.49(1)}Ag_{0.51(1)}Se_{2}$										
Bal	0.01623(13)	0.00841(12)	0.01028(13)	0.000	0.00054(7)	0.000				
Cu1/Ag1	0.0235(3)	0.0164(3)	0.0232(3)	0.000	0.00573(19)	0.000				
Cu2/Ag2	0.0179(2)	0.0221(3)	0.0173(3)	0.000	-0.00128(16)	0.000				
Se1	0.0193(2)	0.01296(19)	0.0097(2)	0.000	0.00131(14)	0.000				
Se2	0.01538(19)	0.01168(19)	0.0178(2)	0.000	0.00276(14)	0.000				
$BaCu_{1.20(1)}Ag_{0.80(1)}Se_2$										
Ba1	0.01624(17)	0.01166(17)	0.01071(17)	0.000	0.00025(12)	0.000				
Cu1/Ag1	0.0237(4)	0.0206(4)	0.0239(4)	0.000	0.0056(3)	0.000				
Cu2/Ag2	0.0185(3)	0.0248(3)	0.0188(3)	0.000	-0.0017(2)	0.000				
Se1	0.0204(3)	0.0182(3)	0.0108(3)	0.000	0.0016(2)	0.000				
Se2	0.0170(3)	0.0159(3)	0.0196(3)	0.000	0.0037(2)	0.000				

References

- 1 J. Yu and H. Yun, Acta Cryst. E, 2011, 67, i45-i45.
- 2 T. A. Grzybowski and A. L. Ruoff, Phys. Rev. B, 1983, 27, 6502-6503.
- 3 A. Assoud, J. Xu, and H. Kleinke, *Inorg. Chem.*, 2007, 46, 9906–9911.