Electronic Supplementary Information

Investigation of protein/DNA binding, and *in vitro* cytotoxicity of novel Cu (II) and

Zn(II)-dipyrazinyl pyridine complexes

Parnashabari Sarkar,^a Munmi Gogoi,^b Sonali Palo,^a A.H. Udaya Kumar,^c Sourav Sutradhar,^a

Dipankar Das,^a N.K. Lokanath,^c Akalesh Kumar Verma,^{*b} Biswa Nath Ghosh^{*a}

^aDepartment of Chemistry, National Institute of Technology Silchar, Silchar-788010, Assam,

India, bnghosh@che.nits.ac.in

^bDepartment of Zoology, Cell & Biochemical Technology Laboratory, Cotton University,

Guwahati-781001, Assam, India, akhilesh@cottonuniversity.ac.in

^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India

Figure S1(b): 125 MHz ¹³C NMR spectrum of L in CDCl₃.

Figure S2: 400 MHz ¹H NMR spectrum of 2 in DMSO-d6.

360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 m/z

Figure S3: HR-MS of Cu (II) complex **1** (Inset: Isotopic distribution of molecular ion peak) inset).

Figure S4: HR-MS of Zn (II) complex 2. (Inset: Isotopic distribution of molecular ion peak)

Thermal stabilities of complexes

Thermal stabilities of complexes 1 and 2 have been investigated under the N₂ atmosphere by TGA at a 30-700 °C temperature range, with a heating rate of 10 °C/min. The thermal decomposition of the complexes take place with two main weight loss steps. The first weight loss starts from 30 °C to 330 °C in the DTG curve, attributed to the release of counter anion chloride (obs. 7.4% (for 1) and 6.7% (for 2), cal. 7.5% (for both 1-2)). The second decomposition processes occur in the temperature range of 285-420 °C. The corresponding endothermic peaks are observed in the DTG curve at 390 °C for 1 (obs. 58.75%, cal. 53.68% for 1) and 400 °C for 2 (obs. 57.88%, cal. 53.81% for 1), corresponding to the loss of Cu(dppy) and Zn(dppy) fragment.

complexes 1 (left) and 2 (right)

	Donor (i)	Туре	Occupancy	Acceptor(j)	Туре	Occupancy	E(2)	E(j)-	F(i, j)
ligand							kcal/mol	E(i) a.u	a.u
	C9-N32	π*	0.40233	C7-C8	π*	0.34499	293.8	0.01	0.084
	C9-N32	π*	0.40233	C10-C11	π*	0.32966	250.39	0.01	0.081
	C2-C3	π*	0.38227	C1-C6	π*	0.38115	246.21	0.01	0.08

C17-N33	π*	0.34302	C18-C19	π*	0.31103	166.23	0.02	0.08
C7-C8	π*	0.34499	C1-C6	π*	0.38115	125.57	0.01	0.054
C20-N51	π*	0.36362	C18-C19	π*	0.31103	120.94	0.02	0.079
C27	LP(1)	0.94676	C26-N50	π*	0.35578	88.71	0.12	0.112
C25	LP*(1)	0.94087	C24-N34	π*	0.3417	77.9	0.13	0.112
C27	LP(1)	0.94676	C24-N34	π*	0.3417	70.41	0.12	0.103
C25	LP*(1)	0.94087	C26-N50	π*	0.3417	68.96	0.12	0.103

Table S2: Second-order perturbation theory and	alysis of Fock matrix in NBO calculation for
complexes	and 2 .

	Donor (i)	Туре	Occupancy	Acceptor(j	Туре	Occupan	E(2)	E(j)-	F(i, j)
)		cy	kcal/mol	E(i) a.u	a.u
	C56-C61	π*	0.18746	C41-C55	π*	0.20044	139.96	0.01	0.079
	C58-C65	π*	0.18935	C54-C57	π*	0.19912	135.05	0.01	0.079
	C59-C67	π*	0.1952	C41-C55	π*	0.20044	127.26	0.01	0.081
ex 2	C63-C70	π*	0.1965	C54-C57	π*	0.19912	124.9	0.01	0.081
Comple	N8-C12	π*	0.34714	C25-N42	π*	0.1668	123.33	0.02	0.096
	C19	LP(1)	0.52265	N2-C9	π*	0.37942	68.49	0.1	0.108
	N2-C9	π*	0.37942	C21-C38	π*	0.19422	63.09	0.06	0.099
	N1-C3	π*	0.38106	C11-C23	π*	0.19091	61.8	0.06	0.099
	C21-C38	π*	0.19422	C54-C57	π*	0.19912	60.96	0.01	0.06
	C11-C23	π*	0.19091	C41-C55	π*	0.20044	57.03	0.01	0.058
	1			I	1	I	I	1	1
	C58-C65	π*	1.97757	C54-C57	π*	0.39507	277.56	0.01	0.079
lex 1	N6-C17	π*	1.65183	C32-N47	π*	0.3378	255.42	0.02	0.094
Comp	C63-C70	π*	1.65183	C54-C57	π*	0.39507	255.34	0.01	0.081
	N8-C12	π*	1.97752	C25-N42	π*	0.33783	255.28	0.02	0.094

N5-C14	π*	1.97203	C27-N44	π*	0.33749	253.71	0.02	0.094
N7-C19	π*	1.97757	C35-N50	π*	0.33736	253	0.02	0.094
C35-N50	π*	1.97203	C18-C33	π*	0.26457	86.98	0.02	0.071
C27-N44	π*	1.9775	C15-C28	π*	0.2645	86.96	0.02	0.071
C32-N47	π*	1.97207	C16-C30	π*	0.26456	85.68	0.02	0.071
C25-N42	π*	1.97207	C20-C36	π*	0.26465	32.48	0.16	0.107

Figure S6: Benesi-Hildebrand plot $\{A_o/(A-A_o) \text{ vs. } 1/[\text{ complex}]\}$ of absorption spectra of BSA in the absence and presence of complex 1 and complex 2.

Figure S7: Emission spectra of BSA (10 μ M) ($\lambda_{ex} = 280$ nm) in the presence of increasing concentrations of complex 1 at 308 K and 318 K.

Figure S8: Emission spectra of BSA (10 μ M) (λ_{ex} = 280 nm) in the presence of increasing concentrations of complex **2** at 308 K and 318 K.

Figure S9: Stern-Volmer plot $\{F_0/F \text{ vs. [complex]}\}\$ of emission spectra of BSA in the absence and presence of complex 1 at 298 K, 308 K and 318 K.

Figure S10: Stern-Volmer plot { F_0/F vs. [complex]} of emission spectra of BSA in the absence and presence of complex 2 at 298, 308 K, and 318 K.

Figure S11: Modified Stern-Volmer plot of emission spectra of BSA in the absence and presence of complex **1** at 298 K, 308 K and 318 K.

Figure S12: Modified Stern-Volmer plot of emission spectra of BSA in the absence and presence of complex **2** at 298 K, 308 K, and 318 K.

Equations 1-3 are employed to analyse thermodynamic parameters like ΔH , ΔG , and ΔS , if the enthalpy change (ΔH) does not vary much over the temperature range under study.

 $\ln K = \Delta H/RT + \Delta S/R \tag{1}$

(2)

 $\Delta \mathbf{G} = -\mathbf{R}\mathbf{T}\mathbf{ln}\mathbf{K}$

$$\Delta S = (\Delta H - \Delta G)/T \tag{3}$$

Figure S13: van't Hoff plots for BSA in presence of complexes 1 and 2 at different temperatures.

Figure S14: DNA binding study of metal complexes in the absence and presence of DNA with the electronic absorption spectra.

Figure S15: Stern-Volmer plot $\{F_0/F \text{ vs. [complex]}\}\$ of emission spectra of DNA in the absence and presence of complex 1-2.

Figure S16: Job's plots for complexes 1-2 in ACN (top) and DMSO (below) medium

Figure S17: UV-Visible absorption spectra of the complexes 1-2 at different time intervals in ACN (top) and DMSO (below).