Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Au Nanoparticle anchored Stannatranone-pillared MOF as duo-active electrocatalyst for Overall Water Splitting

Jyoti Rohilla^a, Sahil Thakur^a, Keshav Kumar^a, Raghubir Singh^{b*}, Varinder Kaur^{a*}

^aDepartment of Chemistry, Panjab University, Sector 14, Chandigarh-160014, India

^bDepartment of Chemistry, DAV College, Sector 10, Chandigarh-160011, India

*Corresponding author: var ka04@yahoo.co.in (V.K.), raghubirsingh@davchd.ac.in (R.S.)

List of Figur	es						
Figure S1	1 Photograph of three-electrode electrochemical cell for overall						
	water splitting						
Figure S2	2 (a) Asymmetric unit of Sn-Na MOF, (b) 2D coordination array in						
	Sn-Na MOF.						
Figure S3	Combined FTIR spectra of the Sn-Na MOF and Au NPs/Sn-Na						
	MOF						
Figure S4	XPS of (a) C 1s (Au NPs/Sn-Na MOF).(b) O 1s (Au NPs/Sn-Na						
	MOF)						
Figure S5	PXRD spectra of Au Nps/Sn-Na MOF,	S3					
Figure S6	TGA analysis of Sn-Na MOF and Au Nps/Sn-Na MOF	S4					
Figure S7	LSV polarization curves of Pt as working electrode (a) HER	S4					
	Performance, (b) OER Performance						
Figure S8	LSV polarization curves of IrO ₂ as working electrode (a) HER	S4					
_	Performance, (b) OER Performance						
Figure S9	LSV polarization curves HER performance of Au NPs/Sn-Na	S5					
_	MOF in 1 M KOH using graphite carbon counter electrode						
Figure S10	FESEM image of Au NPs/Sn-Na MOF after 72 h stability test	S5					
Figure S11	(a) XPS survey of Au NPs/Sn-Na MOF after catalytic reaction, XPS	S6					
	Spectra of (b) A u 4f, (c) Sn 3d, (d) C 1s, and (e) O 1s						
Figure S12	(a) ATR-IR spectra of fresh catalyst and recovered catalyst after	S6					
	catalytic reaction, (b) Magnified view of ATR-IR spectra						
Table S1	Previous reported high performance bifunctional catalysts for HER	S7					
	and OER						

Fig. S1 Left: Photograph of three-electrode electrochemical cell for overall water splitting; Right: Enlarged view of cell showing bubbling of gases

Fig. S2 (a) Asymmetric unit of Sn-Na MOF, (b) 2D coordination array in Sn-Na MOF.

Fig. S3 FTIR spectra of Sn-Na MOF and Au NPs/Sn-Na MOF

Fig. S4 XPS spectra of (a) C 1s (Au NPs/Sn-Na MOF), (b) O 1s of (Au NPs/Sn-Na MOF)

Fig. S5 PXRD patterns of (a) Simulated Sn-Na MOF and Sn-Na MOF, (b) Au Nps/Sn-Na MOF.

Fig. S6 TGA analysis of Sn-Na MOF and Au Nps/Sn-Na MOF

Fig. S7 LSV polarization curves of Pt as working electrode (a) HER Performance, (b) OER Performance

Fig. S8 LSV polarization curves of IrO₂ as working electrode (a) HER Performance, (b) OER Performance

Fig. S9 LSV polarization curves HER performance of Au NPs/Sn-Na MOF in 1 M KOH using graphite carbon counter electrode

Fig. S10 FESEM image of Au NPs/Sn-Na MOF after 72 h stability test

Fig. S11 (a) XPS survey of Au NPs/Sn-Na MOF after catalytic reaction, XPS Spectra of (b) A u 4f, (c) Sn 3d, (d) C 1s, and (e) O 1s

Fig. S12 ATR-IR spectra of fresh catalyst and recovered catalyst after catalytic reaction.

Catalysts	Electrolyte	Current Density (mA cm ⁻²)	HER Overpote ntial (mV)	Tafel slope (mV dec ⁻¹) (HER)	Substrate	OER (Overpotential)	OER (Current Density)	Reference
Ni-MOF@Pt	$0.5 \text{ M H}_2\text{SO}_4$	10	43	30	GCE	-	-	17
Ni(OH) ₂ /Pt(111)	0.1 M KOH	9	150		GCE	-	-	20
Pt ₁ /N-C Pt/MoS ₂	1 M NaOH 0.1 M H ₂ SO ₄	10 10	46 145	36.8 96	Carbon Cloth GCE	-	-	18 19
MoS ₂ /Au	0.5 M H ₂ SO ₄	10	330	57	GCE	-	-	21
CuS/Au	$0.5 \mathrm{~M~H_2SO_4}$	10	179	75	GCE	-	-	22
RuAu SAA Au@PD-COP-II	1 M KOH 1 M KOH	10 50	20 184	37 85	GCE Nickel Foam	- 288	- 50	40 27
NiCo ₂ O ₄ -P-COP	0.1 M KOH	10	144	39	Glassy Carbon	325	45	48
Au@AuIr ₂	$0.5 \text{ M H}_2 \text{SO}_4$	10	29	58.3	GCE	261	10	27
Au doped kCo-Ni hvdroxide	6 M NaOH	10	35	92	GCE	340	10	31
NC-PB@CNT	1 M KOH	10	152	108	NC-PB@CNT	240	10	32
Ir/MoS ₂ Nanoflowers	$0.5 \mathrm{~M~H_2SO_4}$	10	35	30.78	Ir/MoS ₂ Nanoflowers	270	10	16
Au NPs/Sn-Na MOF	1 M KOH	10	129	62.3	GCE	650	20	This Work

Table S1: Previous reported high performance bifunctional electrocatalysts for HER and OER