Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Synthesis of Template-Free Magnetite nanospheres fabricated on Sb₂WO₆ hierarchical structures for Sunlight-Driven Photo-Fenton Catalysis of organic pollutants

Abeer A. AlObaid¹, Vipin Shrotriya², Girraj Sharma³, Ghazanfar Nazir⁴ and ^{*}Zia ul

¹Department of chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

²Department of Physics, Government Degree College, Porsa Morena, M.P. 476115-India.

³Jindal Institute of Behavioural Sciences, O.P. Jindal Global (an Institute of Eminence) university, Sonipat, Haryana, 131001-India

⁴Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

⁵Department of Chemistry, University of Kashmir, India.

*Email: Zia.scholar@kashmir university.net

Figure S1. (A) Elemental mapping images of Fe₃O₄.

Figure S1. (B) EDS spectra of Fe₃O₄.

Figure S1. (C) EDS spectra of Fe₃O₄/Sb₂WO₆ (a); SEM micrograph of Fe₃O₄/Sb₂WO₆ (b); weight percentage of respective elements in Fe₃O₄/Sb₂WO₆ (c); vibrational spectra from respective elements in SEM micrographs.

Figure. S2: Deconvoluted XPS spectra of oxygen.

No.	Systems	K (min ⁻¹)	R-Square
1	MB+Fe ₃ O ₄ / Sb ₂ WO ₆ +H ₂ O ₂	0.06607 ± 9.03747	0.998
2	MB+Fe ₃ O ₄ / Sb ₂ WO ₆	0.04675 ± 0.00101	0.988
3	MB+Fe ₃ O ₄ +H ₂ O ₂	0.05574 ± 5.9591	0.975
4	$MB+Fe_3O_4/Sb_2WO_6$	$0.02313 \pm 8.42724\text{E-4}$	0.973
5	MB+Sb ₂ WO ₆		0.971
		0.02212 ± 0.00295	
6	MB+Fe ₃ O ₄		0.984
		0.02588 ± 0.00391	
7	MB+H ₂ O ₂	0.02487 ± 0.00523	0.981

Figure. S3: The kinetic parameters of different reaction systems.

Figure. S4: (a) Adsorption spectra of [MB] =2.5 ppm, $[Fe_3O_4/Sb_2WO_6] = 4 \text{ mg/L}, \text{ pH} = 3);$

(b) Ct/Co vs time calibration plot of MB

No.	Kinetic Models	k	R-Square
1	zero-order	0.00027 ± 2.01343	0.955
2	first-order	0.06607 ± 9.03747	0.998
3	second-order	0.00165±6.00478	0.972

Figure. S5: The parameters of three kinetic models.

Time (min)	COD (ppm)	TOC (ppm)
0	141.2	224.24
5	120.12	147.85
10	73.14	90.34
15	48.35	50.12
20	32.25	36.39
25	19.99	20.43
30	12.64	12.53
35	8.82	2.31

Figure. S6: Chemical oxygen demand (COD) and Total organic carbon (TOC) of Methylene Blue against Fe_3O_4/Sb_2WO_6 photocatalysts

•

Figure. S7: Change in colour depth during dye degradation.