Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Dual photocarrier separation channel in CdS/ZnS for outstanding

photocatalytic hydrogen evolution

Supporting Figures and Table

Yi Zheng,*a Qiaoling Chen, Wenjing Zhang, Chongwen Zhang, Rong Ma, Chunlei Li,*a and Jing

Zhang*b,c

Table S1. Cd and Zn Contents of Prepared Samples Based on ICP-OES Results								
Sample	Cd (wt%)	Zn (wt%)	S (wt%)	CdS:CdS/ZnS weight ratio				
CZS-1	78.26	3.03	18.24	0.96				
CZS-2	28.22	45.65	26.4	0.38				
CZS-3	27.72	50.79	20.67	0.35				
CZS-2' (No Na ₂ S				0.98				
solution was added)	79.14	0.96	18.29					

25 T-H T-Sol 10 15 10 11 11 11 11 11 0.3 1.1 0.1 1.1 0.1 1.1 0.1 1.1

Fig.S1.Photocatalytic performance of the prepared samples samples

Fig.S2. Raman spectra of the CdS nanocrystals and CZS-2

Fig.S3.(a) SEM and (b) TEM images of CdS nanorods , (c) ,(e) SEM and (d), (f)TEM images of CdS/ZnS(CZS-2).

Fig.S4. UV-vis diffuse reflectance spectra of CdS, ZnS and CZS-X nanocomposites.

Fig.S5. (a,b,c,d,e) elemental mapping images and HRTEM images (f) of CdS/ZnS/Rh.

Fig.S6. (a,b,c,d,e) elemental mapping images and HRTEM images (f) of CdS/ZnS/Co₃O₄

Fig.S7.ESR spectra of CdS ,ZnS,CZS-2 samples (a) at dark and (b) light for 5 min,(c) light for 10 min

Catalyst system	Sacrificial agent	RH ₂)(Evolution rate)	AQY(%)	light source	Reference
			4.68	300 w xenon lamp	This work
CdS/ZnS	$0.35M Na_2S 0.25M Na_2SO_3$	1102.5 μmol h ⁻¹		AM1.5G	
			3.76	300 w xenon	24
CdS/ZnS	$0.35M Na_2S 0.25M Na_2SO_3$	140.2 umol h ⁻¹		lamp λ >400nm	

			9.5	300 w xenon	42
CdS/ZnS	$0.35M Na_2S 0.25M Na_2SO_3$	233.15 umol h ⁻¹		lamp λ >420nm	
				300 w xenon	44
CdS/ZnS	0.5 M Na ₂ S-Na ₂ SO ₃	94.05 µmol h⁻¹		lamp λ >420nm	
			9.3	300 w xenon lamp	53
CdS/ZnS	0.5M Na ₂ S $0.5M$ Na ₂ SO ₃	241 umol h ⁻¹		AM1.5G	
			50.61	225 w xenon lamp	65
CdS/ZnS	0.35M Na ₂ S 0.25M Na ₂ SO ₃	726 µmol h ⁻¹		λ >380nm	
				Solar light India	69
CdS/ZnS	0.1 M Na ₂ S-Na ₂ SO ₄	3430 µmol h ⁻¹		(14.57° N, 78.83° E)	

Fig. S8. high-resolution XPS spectra of (a) Cd 3d, (c) Zn 2p and (d) S 2p of the CZS-1, CZS-2 and CZS-3 sample.

AQY is calculated as follows:

$$AQY = \frac{2 \times \nu \times N_A}{IS\lambda/hc} = \frac{2 \times 6.022 \times 10^{-23} \times \left(5.09 \times \frac{10^{-4}}{3600}\right)}{0.061 \times 28.26 \times \frac{420}{6.626 \times 10^{-34} \times 3 \times 10^8}} = 4.68\%$$

where v is the H₂ rate (mol s⁻¹), N_A isAvogadro's constant (mol⁻¹), I is the light intensity (W cm⁻²), S is the irradiation area (cm²), I is the wavelength of incident light (nm), h is the Planck constant (J s) and c is the speed of light(nm s⁻¹).

Fig.S9.(a) XRD and high-resolution XPS spectra of (b) Cd 3d, (c) Zn 2p and (d) S 2p of the CZS-2 sample before

Fig.S10 EPR spectra of CZS-2 before and after the reaction