Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Non-noble metal coordinated hypercrosslinked polymers based on porphyrin for efficient electrocatalytic OER

Xinming Hu, Penglei Cui^{*}, Hong Zhang, Zitong He College of Science, Hebei Agricultural University, Baoding 071001, PR China

Table of contents:

FIGURE S1: ¹ H NMR of the synthesized TPP1
FIGURE S2:13C NMR of the synthesized TPP1
FIGURE S3:XRD pattern of FX-TPP, FX-FeCo-TPP, FX-FeNi-TPP2
FIGURE S4:IR Spectrum (KBr) of TPP and FX-FeCo-TPP2
FIGURE S5:Nitrogen adsorption and desorption curve and pore size distribution of
FX-TPP and FX-FeCo-TPP
FX-TPP and FX-FeCo-TPP FIGURE S6: Comparison of N 1s in XPS between FX-TPP and FX-FeCo-TPP2
FX-TPP and FX-FeCo-TPP2 FIGURE S6: Comparison of N 1s in XPS between FX-TPP and FX-FeCo-TPP2 FIGURE S7:Cyclic voltammetry (CV) of FX-M-TPP at different scan rates
FX-TPP and FX-FeCo-TPP FIGURE S6: Comparison of N 1s in XPS between FX-TPP and FX-FeCo-TPP2 FIGURE S7:Cyclic voltammetry (CV) of FX-M-TPP at different scan rates

¹H NMR spectrum (CDCl₃, 400 MHz) δ : 8.84 (s, 8H, ArH), 8.21-8.20 (d, *J* = 4.0 Hz, 8H, Pyrrole-H), 7.77-7.72 (m, 12H, ArH), and -2.77 (s, 2H, N-H).

Fig. S2 ¹³C NMR of the synthesized TPP

 ^{13}C NMR spectrum (CDCl_3, 101 MHz) δ : 142.22, 140.47, 135.21, 134.62, 133.93, 132.32, 128.09, 128.78, 127.53, 126.73, 123.44, 120.20, 112.30.

Fig. S3 XRD pattern of FX-TPP, FX-FeCo-TPP, FX-FeNi-TPP

Fig. S5 Nitrogen adsorption and desorption curve and pore size distribution of FX-TPP (a) and FX-FeCo-TPP (b)

Fig. S6 Comparison of N 1s in XPS between FX-TPP and FX-FeCo-TPP

Fig. S7 Cyclic voltammetry (CV) of FX-M-TPP at different scan rates.

Sample	Electrolyte (KOH)	Electrode	Overpotentia I (mV)	Tafel slope (mV dec⁻¹)	Ref.
IISERP-COF-3_Ni ₃ N	1.0M	GCE	230	79	[1]
FeMOFs-SO ₃	1.0M	NF	218	36.2	[2]
macro-TpBpy-Co	0.1M	RDE	380	54	[3]
Ni/Fe-COF@CNT ₉₀₀	0.1M	RDE	320	61	[4]
C4-SHz COF	1.0M	GCE	320	39	[5]
Fe₂Ni MOF/NF	1.0M	NF	222	42.39	[6]

Table S1 The comparison of the electrocatalytic OER of different catalytic systems

NiPc–Ni	1.0M	GCE	319	83	[7]
S/N-CMF@Fe _x Co _y Ni ₁₋ _{x-y} -MOF	1.0M	GCE	296	53.5	[8]
Ni-Fe-MOFs NSs	1.0M	GCE	221	56	[9]
CoZn MOF/CC	1.0M	CC	287	76.3	[10]
FX-FeCo-TPP	1.0M	NF	251	35.2	This work

References

- 1 S. Nandi, S. K. Singh, D. Mullangi, R. Illathvalappil, Adv. Energy Mate., 2016, 6, 1601189.
- 2 K. Feng, D. Zhang, F. F. Liu, H. Li, Adv. Energy Mater., 2020, 10, 2000184.
- 3 X. J. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Y. Ye, C. Schlesiger, S. Praetz, J. Schmidt, A. Thomas, J. Am. Chem. Soc., 2019, **16**, 6623-6630.
- 4 Q. Xu, J. Qian, D. Luo, G. J. Liu, Y. Guo, G. F. Zeng, Adv. Sustain. Syst., 2020, 4, 2000115.
- 5 S. Mondal, B. Mohanty, M. Nurhuda, A. Bhaumik, ACS catal., 2020, 10, 5623-5630.
- 6 X. T. Ling, F. Du, Y. T. Zhang, *RSC Adv.*, 2019, **57**, 32940-33562.
- 7 J. W. Li, P. Liu, J. X. Mao, J. Y. Yan, W. B. Song, J. Mater. Chem. A., 2019, 21, 1279-1870.
- 8 Y. F. Zhao, X. F. Lu, Z. P. Wu, Z. H. Pei, D. Y. Luan, Adv. Mater., 2023, 35, 2207888.
- 9 F. L. Li, P. T. Wang, X. Q. Huang, D. J. Young, H. F. Wang, J. P. Lang, Angew. Chem. In. Ed., 2019, 58, 7051-7056.
- 10 J. Wu, Z. J. Yu, Y. Y. Zhang, S. Q. Niu, J. Y. Zhao, S. W. Li, P. Xu, Small, 2021, 17, 2105150.