Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

# **Supporting Information**

Graphene quantum dot surface ligand and Co and Pt double doping engineering Co/Co<sub>3</sub>O<sub>4</sub> nanozyme superior to horseradish peroxidase and choline oxidase for efficient degradation of Rhodamine B without activator

# Li Nana, Li Ruiyi, Li Zaijun<sup>\*</sup> and Liu Xiaohao

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China

<sup>\*</sup>Corresponding author: Tel.:13912371144. E-mail address: zaijunli@jiangnan.edu.cn (Li ZJ)

### **1. Experimental Section**

# 1.1. Materials and reagents

Citric acid, tryptophan, glutamate, cobalt chloride, sodium acetate, acetic acid, chloroplatinic acid hexahydrate (H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), rhodamine B and other reagents employed were all of the highest analytical grade or quality reagents purchased from Shanghai Chemical Company (Shanghai, China). 3,3',5,5'-tetramethylbenzidine (TMB) was purchased from Sigma-Aldrich (Mainland, China). Acetate buffer (0.2 M, pH 3.5) was prepared by the laboratory. Ultrapure water (18.2 M $\Omega$  cm) purified from a Milli-Q purification system was used throughout the experiment.

## 1.2. Apparatus

Transmission electron microscope (TEM) images were conducted on Tecnai F20 microscope at 200 keV (FEI, America). X-ray photoelectron spectroscopy (XPS) measurement was performed using a Thermo Scientific K-Alpha spectrometer with monochromated Al Kα radiation (Thermo Scientific, America). X-ray diffraction (XRD) pattern was measured on X-ray D8 Advance Instrument operated at 40 kV and 20 mA, using Cu-Kα radiation source with  $\lambda$ =0.15406 nm (Bruker AXS, Germany). Raman measurement was carried out using InVia laser micro-confocal Raman Spectrometer (Renishaw, England). Infrared spectra (IR) were recorded on a Nicolet FT-IR 6700 spectrometer (Thermo Fisher Scientific, America). UV-visible spectra were recorded on UV-2700 spectrometer (Shimadzu, Japan). Electrochemical testing was conducted on CHI 660D (Chenhua, shanghai). UV-diffuse reflectance spectra were collected by a UV–vis–NIR spectrometer (Hitachi UV-3600 plus) with BaSO4 as the background. Electron paramagnetic resonance (EPR) spectra were measured at room temperature using the Bruker EMX PLUS spectrometer. Total organic carbon (TOC) tests were performed by Rhodamine B degraded solution (10 mL) by a TOC analyzer (Shimadzu, TOC-VCPH, Japan).

## 1.3. EW-GQD preparation

Mixture of citric acid (2 g), glutamate (1.4 g) and tryptophan (0.97 g) were dissolved in 50 mL of ultrapure water. Then, it was heated at 80°C under stirring until free water was removed and at 170°C for 3 h. The collected EW-GQD crude was dissolved in ultrapure water to form a 100 mg mL<sup>-1</sup> EW-GQD solution. To obtain EW-GQD, the solution was orderly treated by filtering, dialysis with 3000 Da and freeze-drying<sup>1</sup>.

### 1.4. Steady-state dynamic parameter measurement

 $H_2O_2$  and TMB were used as substrate to measure the steady-state dynamic parameters of  $Pt/Co/Co_3O_4/EW$ -GQD as peroxidas-like nanozyme, respectively<sup>1</sup>. When  $H_2O_2$  was used as the substrate, a series of reaction solutions were prepared by mixing 100 µL of 1.0 mM TMB with 750 µL of 0.2 M acetate buffer solution (pH 3.5) and 100 µL of different concentration of  $H_2O_2$  solution. After 50 µL of 1.0 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD dispersion was injected into the above reaction solution, the absorbances at 652 nm was monitored by spectrophotometer. When TMB was used as substrate, a series of reaction solution (pH 3.5) and 100 µL of 0.2 M acetate buffer solution, the absorbances at 652 nm was monitored by mixing 100 µL of 100 mM  $H_2O_2$ , 750 µL of 0.2 M acetate buffer solution (pH 3.5) and 100 µL of different concentration of TMB solution. After 50 µL of 1.0 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD dispersion was injected into the above reaction solution is olution, after 50 µL of 0.2 M acetate buffer solution (pH 3.5) and 100 µL of different concentration of TMB solution. After 50 µL of 1.0 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD dispersion was injected into the above reaction solution, its absorbances at 652 nm was monitored by spectrophotometer.

TMB was used as the substrate to measure the steady-state dynamic parameters of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD as oxidase-like nanozyme. A series of reaction solutions were prepared by mixing 850  $\mu$ L of 0.2 M acetate buffer solution (pH 3.5) and 100  $\mu$ L of different concentration of TMB solution. After 50  $\mu$ L of 1.0 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD dispersion

3

was injected into the above reaction solution, its absorbances at 652 nm was monitored by spectrophotometer.

The steady-state dynamic parameters were calcuated by Lineweaver-Burk equation (1):

$$\frac{1}{V} = \frac{K_M}{V_{max}} \times \frac{1}{[s]} + \frac{1}{V_{max}} \tag{1}$$

where V,  $V_{max}$ , [S] and  $K_M$  present the initial reaction rate, maximum reaction rate, substrate concentration and Michaelis-Menten constant of steady-state dynamic process.

# 1.5. Enzyme activity calculation

Specific activity of  $Pt/Co/Co_3O_4/EW$ -GQD nanozyme was calculated by the equation (2)<sup>2</sup>:

$$b_{nanozyme} = V/(\epsilon \times L) \times (\Delta A/\Delta t)$$
 (2)

where,  $b_{nanozyme}$  (U), V,  $\varepsilon$ , L and  $\Delta A/\Delta t$  present the activity of nanozyme, total volume of a reaction system (1000 µL), molar absorption coefficient of TMB (39000 M<sup>-1</sup> cm<sup>-1</sup>), optical length of cell, and change rate of the absorbance at 652 nm. The specific activity ( $a_{nanozyme}$ , U mg<sup>-1</sup>) of nanozyme was calculated by using equation (3)<sup>2</sup>:

$$a_{nanozyme} = b_{nanozyme} / [m]$$
 (3)

where, [m] presents mass of nanozyme.

## 1.6. DFT calculation

The reaction mechanism of oxidase and peroxidase-like Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD was studied by first principles calculation (DFT) method<sup>3, 4</sup>. The generalized gradient approximation (GGA) of PBE functional was used to deal with variation-correlation interactions<sup>5</sup>. A double numerical (DN) base set is used for geometric optimization and total energy calculation. The k-point in the Brillouin zone is set to 2×2×1 mesh using the Monkhorst-Pack grid. The vacuum spacing perpendicular to the direction of the structural plane is 15 Å to avoid interaction between adjacent molecules. The convergence tolerance of SCF is 1.0×10<sup>-5</sup> Ha. The geometrically optimized energy and maximum force are  $1.0 \times 10^{-5}$  Ha and 0.004 Ha Å<sup>-1</sup>, respectively. The crystal structures of the (2×2×1) Co<sub>3</sub>O<sub>4</sub> (220) surface obtained from the Materials Project online service (ID: mp-18748) was built to represent the catalytic surfaces of catalyst. And graphene is obtained by supercell (3×3) the crystal surface of graphite (001). The Gibbs free energies of \*OO, \*OOH, \*O, \*OH, \*H<sub>2</sub>O<sub>2</sub>, \*OH-\*OH and \*OH on the surface of Pt doped Co<sub>3</sub>O<sub>4</sub>/EW-GQD, Co<sub>3</sub>O<sub>4</sub>/EW-GQD and Co<sub>3</sub>O<sub>4</sub> were evaluated by using DFT calculations. The Gibbs free energy diagram for oxidase and peroxide-like was constructed by calculating the change in Gibbs free energy ( $\Delta$ G) for each basic reaction step at 25°C.  $\Delta$ G was calculated by subtracting the Gibbs free energy of the reactant from the product. The form is as follows:  $\Delta$ G= $\Delta$ E-T $\Delta$ S, where T is the absolute temperature, S is the entropy, and E is the energy. The adsorption energy of different catalyst for •OH were calcuated by following equation:  $E_{ads}$ , •OH =  $E_{•OH@catalyst}$ - $E_{catalyst}$ , and  $E_{•OH}$  were the total energy of catalyst with an adsorbed hydroxyl,  $E_{catalyst}$ , and  $E_{•OH}$  were the total energies of catalyst and one free hydroxyl radical, respectively.

# **1.7.** Total organic carbon test

The ability of  $Pt/Co/Co_3O_4/EW$ -GQD to mineralize Rhodamine B was determined by monitoring the change of total organic carbon (TOC) content under different reaction times during Rhodamine B degradation. The TOC removal efficiency is calculated by the following formula.

TOC Removal Efficiency (%) = 
$$\frac{TOC_0 - TOC_t}{TOC_0} \times 100\%$$
 (4)

where,  $TOC_0$  is the TOC value of the initial concentration of reaction solution and  $TOC_t$  is the TOC value of the reaction solution at different time.

### 2. Results and discussion



Fig. s1 TEM (A), FT-IR (B), excitation spectrum and emission spectrum (C) of EW-GQD and the emission specta (D) of



EW-GQD at different excitation wavelengths.

Fig. s2 EDS spectrum of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD.



Fig. s3 FTIR spectra (A) of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD, reduced EW-GQD and Co<sub>3</sub>O<sub>4</sub>.



Fig. s4 Charge density difference maps of heterojunction combined by EW-GQD and  $Pt/Co/Co_3O_4$ . The blue and pink iso-surfaces represent gain and loss of electrons respectively



Fig. s5 High-resolution Pt4f (A) and C1s (B) XPS spectra of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD.



**Fig. s6** Absorption spectra (A) of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD+TMB under different catalyst concentrations (Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD concentration from bottom to top is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130  $\mu$ g mL<sup>-1</sup>); the relationship curve (B) between absorbance at 652 nm and Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD concentration; the relationship curve between absorbance at 652 nm and incubation time of the reaction system at a concentration of 100  $\mu$ g mL<sup>-1</sup>; the relationship curve between pH and the absorbance at 652nm of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD+TMB.



Fig. s7 Steady-state kinetic assay (A) and Lineweaver–Burk plot (B) for TMB of Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD.



Fig. s8 Steady-state kinetic assay (A) and Lineweaver–Burk plot (B) for TMB of Co/Co<sub>3</sub>O<sub>4</sub>.



Fig. s9 Steady-state kinetic assay (A) and Lineweaver–Burk plot (B) for TMB of Co<sub>3</sub>O<sub>4</sub>.



Fig. s10 Plots of the TMB reaction solutions added 5, 10, 15 and 20  $\mu$ L of 10 ng mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD vs. the incubation time (A), and relationship curve of oxidase-like activity (U mg<sup>-1</sup>) with the amounts of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD in the TMB reaction solution (B).



Fig. s11 Steady-state kinetic assay (A) and Lineweaver–Burk plot (B) for H<sub>2</sub>O<sub>2</sub> of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD.



Fig. s12 Steady-state kinetic assay (A and C) and Lineweaver–Burk plot (B and D) for TMB and H<sub>2</sub>O<sub>2</sub> of Co/Co<sub>3</sub>O<sub>4</sub>/EW-

GQD



Fig. s13 Steady-state kinetic assay (A and C) and Lineweaver–Burk plot (B and D) for TMB and H<sub>2</sub>O<sub>2</sub> of Co/Co<sub>3</sub>O<sub>4</sub>.



Fig. s14 Steady-state kinetic assay (A and C) and Lineweaver–Burk plot (B and D) for TMB and H<sub>2</sub>O<sub>2</sub> of Co<sub>3</sub>O<sub>4</sub>.



Fig. s15 Plots of the TMB reaction solutions added 5, 10, 15 and 20  $\mu$ L of 10 ng mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD vs. the incubation time (A), and relationship curve of peroxidase-like activity (U mg<sup>-1</sup>) with the amounts of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD in the TMB reaction solution (B).



Fig. s16 Degradation efficiencies of 5 min incubation in the presence of 0.6 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD with different number of reuses (E), and degradation efficiencies of Rhodamine B in the presence of 0.6 mg



 $mL^{\text{-}1}$  Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD with different standing time (F).

Fig. s17 SEM and XRD pattern of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD after 5 cycles of use



**Fig. s18** Plots (A) of C/C<sub>0</sub> vs. the incubation time and degradation efficiencies (B) of 5 min incubation with 0.4, 0.5, 0.6 and 0.7 mg mL<sup>-1</sup> Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD, plots (C) of C/C<sub>0</sub> vs. the incubation time and degradation efficiencies (D) of 5 min incubation in the pH of 3.0, 3.5, 4.0 and 5.0.



Fig. s19 High-resolution XPS spectra of C1s of Pt/Co/Co<sub>3</sub>O<sub>4</sub>/EW-GQD nanozyme before and after used



Fig. s20 High performance liquid chromatography (A) and mass spectra (B) of RhB before degradation



Fig. s21 High performance liquid chromatography (A) and mass spectra (B-D) of RhB degradation products after

degradation time of 0.5 min



Fig. s22 High performance liquid chromatography (A) and mass spectra (B-E) of RhB degradation products after

degradation time of 1 min



Fig. s23 High performance liquid chromatography (A) and mass spectra (B) of RhB degradation products after

degradation time of 5 min



Fig. 24 Possible degradation pathway of Rhodamine B

| Electrode materials                          | R <sub>s</sub> (Ω) | R <sub>ct</sub> (Ω) |
|----------------------------------------------|--------------------|---------------------|
| Co <sub>3</sub> O <sub>4</sub>               | 119.1              | 952.6               |
| Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD    | 30.1               | 396.5               |
| Pt/Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD | 12.5               | 79.3                |

Table s1 Impedance parameters of different materials modified ITO glass calculated according to equivalent circuit

Table s2 Comparison of the kinetic parameters (K<sub>M</sub> and V<sub>max</sub>) of various oxidase-like nanozyme

| Nanozymes                                                            | K <sub>M</sub> (mM) | V <sub>max</sub> (10 <sup>-7</sup> M s <sup>-1</sup> ) | Ref.    |
|----------------------------------------------------------------------|---------------------|--------------------------------------------------------|---------|
| Fe-N-C single-atom nanozymes                                         | 1.81                | 0.00601                                                | 6       |
| Defect-rich graphene stabilized atomically dispersed $Cu_3$ clusters | 2.98                | 1.15                                                   | 7       |
| Hollow C@MoS <sub>2</sub> nanotubes-Hg <sup>2+</sup>                 | 3.35                | 0.344                                                  | 8       |
| MoS <sub>2</sub> -Hg <sup>2+</sup>                                   | 5.23                | 0.159                                                  | 8       |
| ZIF-67 nanosheets                                                    | 13.69               | 0.035                                                  | 9       |
| MOF-818 (Zr-Cu)                                                      | 49.87               | 8.47                                                   | 10      |
| MOF-818 (Fe-Cu)                                                      | 8.99                | 2.96                                                   | 10      |
| Mn <sub>3</sub> O <sub>4</sub>                                       | 5.1                 | 0.092                                                  | 11      |
| CuO <sub>2</sub> nanodot-encapsulated metal-organic framework        | 5.29                | 0.11                                                   | 12      |
| Co <sub>3</sub> O <sub>4</sub>                                       | 0.85                | 1.62                                                   | Present |
|                                                                      |                     |                                                        | work    |
| Co@Co <sub>3</sub> O <sub>4</sub>                                    | 0.94                | 3.60                                                   |         |
| Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD                            | 0.54                | 5.54                                                   |         |
| Pt/Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD                         | 0.28                | 16.69                                                  |         |

Table s3 Comparison of the kinetic parameters ( $K_M$  and  $V_{max}$ ) of various peroxidase-like nanozyme

| Nanozymes               | K <sub>M</sub> ( | mM)   | V <sub>max</sub> | (10 <sup>-7</sup> M s <sup>-1</sup> ) | Ref. |
|-------------------------|------------------|-------|------------------|---------------------------------------|------|
|                         | ТМВ              |       | ТМВ              | $H_2O_2$                              |      |
| Fe single-atom nanozyme | 3.92             | 0.243 | 5.88             | 8.25                                  | 13   |
| ZIF-67 nanosheets       | 13.69            | 3.52  | 0.035            | 0.028                                 | 14   |
| Cu-MOF                  | 4.11             | 6.41  | 5.56             | 1.02                                  | 15   |
| HRP                     | 0.43             | 3.70  | 1                | 0.871                                 | 16   |
| Mesoporous iron oxide   | 0.298            | 146.7 | 0.736            | 0.637                                 | 17   |

| Pt clusters on the Fe single-atom            | 1.8   | 19.6  | 14    | 16    | 18      |
|----------------------------------------------|-------|-------|-------|-------|---------|
| nanozymes                                    |       |       |       |       |         |
| Fe-Zr-MOL                                    | 1.24  | 0.22  | 0.91  | 0.39  | 19      |
| Cu-N-C                                       | 3.76  | 19.94 | 7.505 | 2.007 | 20      |
| Copper nanoclusters                          | 1.125 | 5.1   | 0.72  | 1.68  | 21      |
| Co <sub>3</sub> O <sub>4</sub>               | 2.10  | 0.71  | 2.73  | 1.65  | Present |
|                                              |       |       |       |       | work    |
| Co@Co <sub>3</sub> O <sub>4</sub>            | 0.88  | 1.11  | 3.86  | 2.67  |         |
| Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD    | 0.77  | 0.78  | 8.31  | 5.16  |         |
| Pt/Co@Co <sub>3</sub> O <sub>4</sub> /EW-GQD | 0.061 | 2.16  | 14.30 | 13.31 |         |

Table s4 Comparison of catalytic activity of different nanozymes

| Nanozyme                                         | Enzyme-like activity | Specific activity | Temperature      | Ref.                |
|--------------------------------------------------|----------------------|-------------------|------------------|---------------------|
|                                                  |                      | (U mg⁻¹)          | (°C)             |                     |
| Fe-N-C single-atom nanozyme                      | Peroxidase-like      | 57.76             | 37               | [22]                |
| Citrate-Os NPs                                   | Peroxidase-like      | 393               | 55               | [23]                |
| Citrate-Pt NPs                                   | Peroxidase-like      | 323.7             | 55               | [23]                |
| Citrate-Au NPs                                   | Peroxidase-like      | 1.35              | 55               | [23]                |
| Fe <sub>2</sub> O <sub>3</sub> /carbon nanotubes | Peroxidase-like      | 25.4              | 37               | [24]                |
| Cellulose nanofibrils-                           | Peroxidase-like      | 0.415             | 30               | [25]                |
| supported PdNPs                                  | Oxidase-like         | 0.277             | 30               |                     |
| Fe,N co-doped ultrathin                          | Peroxidase-like      | 36.6              | 40               | [ <mark>26</mark> ] |
| hollow carbon framework                          |                      |                   |                  |                     |
| N doped carbon                                   | Peroxidase-like      | 6.3               | 40               | [ <mark>26</mark> ] |
| Fe,N co-doped carbon                             | Peroxidase-like      | 15.2              | 40               | [ <mark>26</mark> ] |
| PdNPs/ TEMPO-oxidized                            | Peroxidase-like      | 0.215             | 30               | [27]                |
| cellulose nanofibril                             | Oxidase-like         | 0.107             | 30               |                     |
| Prussian blue nanoparticles                      | Peroxidase-like      | 465.8             | 37               | [28]                |
| Fe single-atom/Pt clusters                       | Peroxidase-like      | 87.7              | 37               | [29]                |
| AuPtCo                                           | Peroxidase-like      | 27.1              | Room temperature | [30]                |
| Pyrite                                           | Peroxidase-like      | 58                | 37               | [31]                |
| Pt/Co@Co₃O₄/EW-GQD                               | Peroxidase-like      | 1662.64           | 37               | This                |
|                                                  | Oxidase-like         | 293.45            | 37               | work                |

Table s5 The proportion of key elements in different chemical states in fresh and used Pt/Co@Co<sub>3</sub>O<sub>4</sub>/EW-GQD

| Elements | Chemical states | Content before used | Content after used (%) | Change value after  |
|----------|-----------------|---------------------|------------------------|---------------------|
|          |                 | (%)                 |                        | and before used (%) |

| C  | C-C              | 38.91 | 46.31 | 7.40  |
|----|------------------|-------|-------|-------|
|    | C-0              | 39.11 | 34.87 | -4.24 |
|    | C-N              | 21.98 | 18.82 | -3.16 |
| Ν  | pyrrole N        | 45.38 | 47.08 | 1.70  |
|    | pyridine N       | 35.59 | 32.27 | -3.32 |
|    | graphite N       | 19.03 | 20.65 | 1.62  |
| 0  | lattice oxygen   | 74.23 | 75.34 | 1.11  |
|    | oxygen vacancy   | 25.77 | 24.66 | -1.11 |
| Co | Co <sup>0</sup>  | 50.53 | 54.98 | 4.45  |
|    | Co <sup>2+</sup> | 14.47 | 10.26 | -4.21 |
|    | Co <sup>3+</sup> | 35.00 | 34.76 | -0.24 |
| Pt | Pt <sup>2+</sup> | 74.70 | 75.59 | 0.89  |
|    | Pt <sup>4+</sup> | 25.30 | 24.41 | -0.89 |

### Reference

1. Z. G. Khan, T. N. Agrawal, S. B. Bari, S. N. Nangare and P. O. Patil, Application of surface nitrogen-doped graphene quantum dots in the sensing of ferric ions and glutathione: Spectroscopic investigations and DFT calculations, Spectrochim. Acta A, 2024, 306, 123608.

https://doi.org/10.1016/j.saa.2023.123608.

2. B. Jiang, D. M. Duan, L. Z. Gao, M. J. Zhou, K. L. Fan, Y. Tang, J. Q. Xi, Y. H. Bi, Z. Tong, G. F. Gao, N. Xie, A. F. Tang, G. H. Nie, M. M. Liang and X. Y. Yan, Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes, Nat. Protoc., 2018, 3, 1506-1520.

https://doi.org/10.1038/s41596-018-0001-1.

3. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci., 1996, 6, 15-50.

https://doi.org/10.1016/0927-0256(96)00008-0.

4. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set, Phys. Rev. B, 1996, 54, 11169-11186.

https://doi.org/10.1103/PhysRevB.54.11169.

5. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865-3868.

https://doi.org/10.1103/PhysRevLett.77.3865.

6. Y. Wu, L. Jiao, X. Luo, W. Q. Xu, X. Q. Wei, H. J. Wang, H. Y. Yan, W. L. Gu, B. Z. Xu, D. Du, Y. H. Lin and C. Z. Zhu, Oxidase-Like Fe-N-C Single-Atom Nanozymes for the Detection of Acetylcholinesterase Activity, Small, 2019, 15, 1903108.

https://doi.org/10.1002/smll.201903108.

7. F. C. Meng, M. Peng, Y. L. Chen, X. B. Cai, F. Huang, L. N. Yang, X. Liu, T. Li, X. D. Wen, N. Wang, D. Q. Xiao, H. Jiang, L. X. Xia, H. Y. Liu and D. Ma, Defect-rich graphene stabilized atomically dispersed Cu-3 clusters with enhanced oxidase-like activity for antibacterial applications, Appl. Catal. B: Environ., 2022, 301, 120836.

https://doi.org/10.1016/j.apcatb.2021.120826.

8. L. P. Feng, L. X. Zhang, Y. S. Gong, Z. L. Du, X. Chen, X. Y. Qi, X. Q. Zhang, G. J. Mao, H. Wang, Hollow C@MoS<sub>2</sub> nanotubes with  $Hg^{2+}$ -triggered oxidase-like catalysis: A colorimetric method for detection of  $Hg^{2+}$  ions in wastewater, Sensor. Actuat. B: Chem., 2022, 361 () 131725.

https://doi.org/10.1016/j.snb.2022.131725.

9. S. J. Wang, D. P. Xu, L. Ma, J. X. Qiu, X. Wang, Q. L. Dong, Q. Zhang, J. Pan and Q. Liu, Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis, Anal. Bioanal. Chem., 2018, 410, 7145-7152.

https://doi.org/10.1007/s00216-018-1317-y.

10. S. Kulandaivel, C. H. Lin and Y. C. Yeh, The bi-metallic MOF-919 (Fe-Cu) nanozyme capable of bifunctional enzymemimicking catalytic activity, Chem. Commun., 2022, 58, 569-572.

https://doi.org/10.1039/d1cc05908d.

11. Y. R. Chen, Y. D. Xia, Y. W. Liu, Y. Tang, F. Q. Zhao and B. Z. Zeng, Colorimetric and electrochemical detection platforms for tetracycline based on surface molecularly imprinted polyionic liquid on Mn<sub>3</sub>O<sub>4</sub> nanozyme, Biosens. Bioelectron., 2022, 216, 114650.

https://doi.org/10.1016/j.bios.2022.114650.

12. W. H. Wang, S. Xiao, M. L. Zeng, H. Z. Xie and N. Gan, Dual-mode colorimetric-electrochemical biosensor for Vibrio parahaemolyticus detection based on CuO<sub>2</sub> nanodot-encapsulated metal-organic framework nanozymes, Sensor. Actuat. B: Chem., 2023, 387, 133835.

https://doi.org/10.1016/j.snb.2023.133835.

C. Zhao, C. Xiong, X. K. Liu, M. Qiao, Z. J. Li, T. W. Yuan, J. Wang, Y. T. Qu, X. Q. Wang, F. Y. Zhou, Q. Xu, S. Q. Wang,
 M. Chen, W. Y. Wang, Y. F. Li, T. Yao, Y. E. Wu and Y. D. Li, Unraveling the enzyme-like activity of heterogeneous single atom catalyst, Chem. Comm., 2019, 55, 2285-2288.

https://doi.org/10.1039/c9cc00199a.

14. S. J. Wang, D. P. Xu, L. Ma, J. X. Qiu, X. Wang, Q. L. Dong, Q. Zhang, J. Pan and Q. Liu, Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis, Anal. Bioanal. Chem., 2018, 410, 7145–7152. https://doi.org/10.1007/s00216-018-1317-y.

15. C. H. Wang, J. Gao and H. L. Tan, Integrated Antibody with Catalytic Metal-Organic Framework for Colorimetric Immunoassay, ACS Appl. Mater. Interfaces, 2018, 10, 25113-25120.

https://doi.org/10.1021/acsami.8b07225.

16. M. M. Liang and X. Y. Yan, Nanozymes: From New Concepts, Mechanisms, and Standards to Applications, Acc. Chem. Res., 2019, 52, 2190-2200.

https://doi.org/10.1021/acs.accounts.9b00140.

17. R. Bhattacharjee, S. Tanaka, S. Moriam, M. Kamal Masud, J. J. Lin, S. M. Alshehri, T. Ahamad, R. R. Salunkhe, N. T. Nguyen, Y. Yamauchi, M. S. A. Hossain and M. J. A. Shiddiky, Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation, J. Mater. Chem.

B, 2018, 6, 4783-4791.

https://doi.org/10.1039/c8tb01132j.

18. Y. F. Chen, L. Jiao, H. Y. Yan, W. Q. Xu, Y. Wu, L. R. Zheng, W. L. Gu and C. Z. Zhu, Fe-N-C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay, Anal. Chem., 2021, 93, 12353-12359.

https://doi.org/10.1021/acs.analchem.1c02115.

19. Z. Wu, J. Wen, J. Li, L. Chen, W. Li and K. Yang, The engineering design of single-site nanozyme based on metalorganic layers for the detection of antioxidant substances, Mater. Today Chem., 2023, 30, 101598.

https://doi.org/10.1016/j.mtchem.2023.101598.

20. Y. Wu, J. B. Wu, L. Jiao, W. Q. Xu, H. J. Wang, X. Q. Wei, W. L. Gu, G. X. Ren, N. Zhang, Q. H. Zhang, L. Huang, L. Gu and C. Z. Zhu, Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing, Anal. Chem., 2020, 92, 3373-3379.

https://dx.doi.org/10.1021/acs.analchem.9b05437.

21. C. Y. Liu, Y. Y. Cai, J. Wang, X. Liu, H. Ren, L. Yan, Y. J. Zhang, S. Q. Yang, J. Guo and A. H. Liu, Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing, ACS Appl. Mater. Interfaces, 2020, 12, 42521-42530. https://dx.doi.org/10.1021/acsami.0c11983.

21

22. X. H. Niu, Q. R. Shi, W. L. Zhu, D. Liu, H. Y. Tian, S. F. Fu, N. Cheng, S. Q. Li, J. N. Smith, D. Du and Y. H. Lin, Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed  $Fe-N_x$ moieties hosted by MOF derived porous carbon, Biosens. Bioelectron., 2019, 142, 111495.

https://doi.org/10.1016/j.bios.2019.111495.

23. S. B. He, L. Yang, P. Balasubramanian, S. J. Li, H. P. Peng, Y. Kuang, H. H. Deng and W. Chen, Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O<sub>2</sub>, J. Mater. Chem. A, 2020, 8, 25226-25234.

https://doi.org/10.1039/d0ta09247a.

24. Y. C. Yang, T. Li, Y. Qin, L. B. Zhang and Y. Chen, Construct of Carbon Nanotube-Supported  $Fe_2O_3$  Hybrid Nanozyme by Atomic Layer Deposition for Highly Efficient Dopamine Sensing, Front. Chem., 2020, 8, 564968. https://doi.org/10.3389/fchem.2020.564968

25. R. Dadigala, R. Bandi, M. Alle, C. W. Park, S. Y. Han, G. J. Kwon and S. H. Lee, Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation, J. Hazard. Mater., 2022, **436**, 129165.

https://doi.org/10.1016/j.jhazmat.2022.129165.

26. J. Y. Hao, C. Zhang, C. X. Feng, Q. Wang, Z. Y. Liu, Y. Li, J. S. Mu, E. C. Yang and Y. Wang, An ultra-highly active nanozyme of Fe,N co-doped ultrathin hollow carbon framework for antibacterial application, Chinese Chem. Lett., 2023, 34, 107650.

https://doi.org/10.1016/j.cclet.2022.06.073.

27. R. Dadigala, R. Bandi, S. Y. Han, G. J. Kwon and S. H. Lee, Rapid in-situ growth of enzyme-mimicking Pd nanoparticles on TEMPO-oxidized nanocellulose for the efficient detection of ascorbic acid, Int. J. Biol. Macromol., 2023, 234, 123657.

https://doi.org/10.1016/j.ijbiomac.2023.123657.

28. Z. G. Qin, B. Chen, Y. Mao, C. Shi, Y. Li, X. Huang, F. Yang and N. Gu, Achieving Ultrasmall Prussian Blue Nanoparticles as HighPerformance Biomedical Agents with Multifunctions, ACS Appl. Mater. Interfaces, 2020, 12, 57382-57390.

https://dx.doi.org/10.1021/acsami.0c18357.

29. Y. F. Chen, L. Jiao, H. Y. Yan, W. Q. Xu, Y. Wu, L. R. Zheng, W. L. Gu and C. Z. Zhu, Fe–N–C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay, Anal. Chem., 2021, 93, 12353-12359.

https://doi.org/10.1021/acs.analchem.1c02115.

22

30. X. Y. Zhou, C. Fan, Q. W. Tian, C. H. Han, Z. Q. Yin, Z. Y. Dong and S. Bi, Trimetallic AuPtCo Nanopolyhedrons with Peroxidase- and Catalase-Like Catalytic Activity for Glow-Type Chemiluminescence Bioanalysis, Anal. Chem., 2022, 94, 847-855.

https://doi.org/10.1021/acs.analchem.1c03572.

31. X. Q. Meng, D. D. Li, L. Chen, H. L. He, Q. Wang, C. Y. Hong, J. Y. He, X. F. Gao, Y. L. Yang, B. Jiang, G. H. Nie, X.
Y. Yan, L. Z. Gao and K. L. Fan, High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis–Ferroptosis
Synergistic Tumor Therapy, ACS Nano, 2021, 15, 5735-5751.

https://dx.doi.org/10.1021/acsnano.1c01248.