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Fig. S1. Schematic representation for the synthesis of CaSnO; nanorods/Bi, WO
nanosheets composite

Fig. S2. (a) Represents the photocatalytic instrument, (b)Top view of the instrument during the
photocatalysis and (c) Tubes contains reaction mixture after successive photodegradation.

Raman Studies:

Fig. S3 depicts the Raman plot of CaSnO3/ Bi;WOs compound. The formation of the composite
is confirmed by the presence of both CaSnO; and Bi, WO, compounds' Raman active modes.
The active Raman peaks of orthorhombic CaSnOj; phase are represented by 183, 275, 356 and
570 cm!. The three major symmetric modes of By,, A, and By, are defined by 183, 275 and
356 cm! peaks. Raman modes centered at 746, 806, 1040, 1120, 1250 and 1300 cm'! confirmed

the presence of Bi;WO, antisymmetric and symmetric A, modes of O-W-O terminals of



stretching vibrations. The Raman mode located at 950 cm™! is attributed to the W=0 stretching
bond.
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Fig. S3 Raman spectrum of CaSn0O,/Bi, WO, compound



Fig. S4. Elemental mapping of CaSnO;/Bi,WO4 composite material shows (a) SEM image, (b)
Overlay image, (¢) Calcium, (d) Tin, (e) Carbon, (f) Oxygen (g) Tungsten and (h) Bismuth
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Fig. SS. Reusable ability graph of CaSnO3/Bi,WO4 nanocomposite

Effect of Scavengers on photocatalytic dye degradation:

To assess the primary contribution of photogenerated species to dye degradation and to forecast
a potential photocatalytic mechanism. We have taken three different scavengers, namely,

benzoquinone BQ (ImM), ammonium oxalate AO (1mM) and tert-butyl alcohol TBA (1mM),

to trap the superoxide ion radical (.0 E), hole (h™) and photogenerated hydroxyl radical ({OH),
respectively. The breakdown efficiency of the dye is significantly decreased in Fig. S6., by
adding several scavengers. According to analysis, scavengers like BQ, AO, and TBA have

MB degradation efficiencies of 70, 64, and 23%, respectively. This illustrates how h* and

03 affect the dye degradation when exposed to visible light. However, the addition of TBA
scavenges the activity of ‘OH, leading to a significant reduction in the photocatalytic activity,

suggesting that ‘OH and are the primary dynamic species in dye photodegradation.
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Fig. S6 Photocatalytic degradation for the kinetic studies of CaSnO,/ Bi, WO,

composite
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Fig. S7. XRD Pattern of CaSnO;/Bi, WO4 nanocomposites after
the degradation.

il

[ A e T s~y -1.03
¥ 0.15

o< Ny A R Sy A S Sy A :

Y

=l

w

= MB Dye—> H,0 + CO,

------------------- 3.2
Ll S 3.3

Evs BiZWOS\ H,0
CasSn0,

Fig. S8. Schematic representation of Type-I schemes for the photocatalytic MB
degradation
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Fig. S9 Trajectory of photocatalytic degradation of Methylene blue

Fig. S9a. List of degradation intermediate structures with molecular weights
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Fig. S9b. Mass spectrum of Methylene blue dye degradation intermediate products
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Fig. S10. Photoluminescence spectra of (a) Excitation spectrum, (b) Emission plots of

CaSn03 , BizWOﬁ, CaSn03/B i2W06




Effect of CV with different pH:

The cyclic voltammogram of the modified GCE compound with CaSnO;/Bi, WOy at various
pH values is shown in Fig. S11. The oxidation peak current response is observed within 50 pA
in the electrocatalytic activity of the elementary weak alkali (pH 9) and strong acidic (pH 4).
The oxidation current response for the slightly acidic pH 6 increased to 80 pA; for the neutral
pH 7, it reached a higher value of 165 pA. This reveals that pH variation does not impact
sensing for the CaSnO3/Bi;WO¢ modified GCE.
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Fig. S11 Cyclic voltammogram of CaSnO,/Bi, WO, compound at different pH values
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Fig. S12. Schematic representation showing the mechanism of electrochemical nitrite
sensing by CaSnO3/Bi, WO¢ modified glassy carbon electrode




