## Electronic Supplementary Information (ESI $\dagger$ )

# Synthesis of cyanoaminopyridyl enaminoates for their fluorescent "turn off" response towards Fe (III) ions 

Lalita Devi, ${ }^{\text {a }}$ Sonakshi Sasan, ${ }^{\text {a }}$ Avtar Changotra, ${ }^{\text {b }}$ Kamal K. Kapoor ${ }^{\text {a* }}$<br>${ }^{\text {a Department }}$ of Chemistry, University of Jammu, Jammu 180006, J\&K, India; Email: kamalkka@ gmail.com<br>${ }^{\text {b }}$ Department of Chemistry, School of Sciences, Cluster University of Jammu, Jammu, 180001, J\&K, India<br>*Corresponding author

| S. No. | Content | Page No. |
| :---: | :--- | :---: |
| $\mathbf{1}$ | Experimental section | $2-4$ |
| $\mathbf{2}$ | Spectral data of the synthesized compounds | $5-8$ |
| $\mathbf{3}$ | ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthesized compounds | $9-18$ |
| $\mathbf{4}$ | FTIR spectra of synthesized compounds | $19-23$ |
| $\mathbf{5}$ | Photophysical graphs of compound 2e | $24-28$ |
| $\mathbf{6}$ | Optimized Cartesian Coordinates of Different Stationary <br> Points | $28-30$ |

## 1. Experimental section

## Experimental section

## Reagents and Instruments

All the commercially available reagents and substrates were purchased from Sigma Aldrich and were used as such without further purification. All the experiments were performed in an oven dried glass apparatus. The progress of reaction was monitored by thin layer chromatography (TLC) using silica gel pre-coated aluminum sheets ( 60 F254, Merck). Solvents were distilled before their use in extraction and purification and further, a rotary evaporator was used to remove them. For photophysical characterization (UV-Vis absorption and fluorescence emission), spectroscopic grade solvents (Merck or Aldrich) and deionized water were used. Melting point $\left({ }^{\circ} \mathrm{C}\right)$ measurements were done using glass capillaries using Perfit melting point apparatus and were uncorrected. The reaction was monitored using the thin-layer chromatography (TLC) plates ( 60 F254, Merck). Spots were visualized using ultraviolet light (UV) light at 365 and 254 nm . The other visualizing materials include an iodine vapor chamber, Draggendorff reagent and anisaldehyde reagent. The crude product purification was done over column chromatography (silica gel, 60-120 mesh) using a gradient of ethyl acetate and petroleum ether as eluent.The IR spectra ( $\mathrm{v}, \mathrm{cm}^{-1}$ ) were performed using a PerkinElmer FTIR spectrophotometer aided by KBr discs. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ on a Bruker AC- 400 spectrometer where the working frequencies were set at 400 and 101 MHz , respectively. The internal standard used was tetramethylsilane (TMS). The chemical shifts $\delta$ are expressed in parts per million (ppm) downfield from TMS. $J$ values are given in hertz (Hz). All the ${ }^{13} \mathrm{C}$ NMR spectra are proton decoupled. The abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{q}$ and m in ${ }^{1} \mathrm{H}$ NMR spectra refer to singlet, doublet, quartet and multiplet respectively. Electrosprayionization mass spectra MS (ESI) were recorded on Micro Mass VG- 7070 H mass spectrometer at 70 eV . HRMS was recorded using XEVO-G2 XS QTOF with an ESI source in positive mode. UV-Vis and fluorescence spectra were recorded with Perkin Elmer UV/VIS/NIR spectrophotometer Lambda 1050+ and a PTIQM40 spectrofluorometer, respectively, using quartz cuvettes with an optical path length of $10 \times 10 \mathrm{~mm}$. Deionized water was obtained from a Direct-Q3 UV deionizer from Millipore. All pH measurements of samples were carried out using a digital pH meter.

## General procedure for the synthesis of 2

A mixture of ethyl cyclopentanone-2-carboxylate 4 ( 1 mmol ) and substituted 2-amino-3cyanopyridines $\mathbf{3}$ ( 1 mmol ) was taken in an oven dried round bottom flask ( 25 mL ) in glacial
acetic acid $(1 \mathrm{~mL})$ and refluxed in oil bath. The progress of the reaction was monitored by TLC. After completion, acetic acid was removed and residue was poured into ethylacetate $(20 \mathrm{~mL})$, washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$. After drying over anhydrous sodium sulfate, ethylacetate was removed on rotavapor and the residue after column chromatography gave the desired product ( $\mathbf{( 2 a - 2 i}$ ).

## General procedure for metal sensing studies

For absorption and emission titration studies, a stock solution $\left(1.0 \times 10^{-4} \mathrm{M}\right)$ of $\mathbf{2 e}$ was prepared in an optimized THF/water solution ( $6: 4, \mathrm{v} / \mathrm{v}$ ) and $10 \mu \mathrm{M}$ was set as the working concentration. Stock solutions with concentrations of $10 \times 10^{-2}$ and $1.0 \times 10^{-2} \mathrm{M}$ of various metal salts $\left(\mathrm{LiCl}, \mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CaCl}_{2}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{FeCl}_{2}, \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2}\right.$. $6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiCl}_{2}, \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnCl}_{2}, \mathrm{CdCl}_{2}$ and $\mathrm{HgCl}_{2}$ ) were prepared in deionized water. All the spectral measurements were carried out at room temperature. To study the binding behavior of 2 e towards different metal cations, 100 eq. of metal salts was added independently to 2 mL of $10 \mu \mathrm{M}$ solution of $\mathbf{2 e}$ in a quartz cuvette. Before taking the electronic absorption as well as fluorescence spectra, the solutions were mixed properly. For UV experiments, the slit width of the instrument was set at 2.00 nm , and for fluorescence studies, slit widths of both excitation and emission were set at 3.00 nm with excitation wavelength $\lambda \mathrm{ex}=365 \mathrm{~nm}$. Titration studies were performed by varying the concentration of metal ions ( $2-100$ equiv) and keeping the concentration of 2 e constant at $10 \mu \mathrm{M}$ to get the required molar ratios between the sensor 2 e and the metal ions. The total volume of the solution used for the measurements was maintained at $\sim 2 \mathrm{~mL}$ throughout the experiment. Dilution was not allowed to exceed by more than a factor of $10 \%$ to minimize the dilution effects.

## Stern-Volmer plot

The fluorescence quenching nature of $\mathbf{2 e}$, when exposed to $\mathrm{Fe}^{3+}$ was explained by constructing the Stern-Volmer plot ${ }^{58,59}$ according to eq. 1
$\frac{F_{0}}{F}=1+K_{S V}[Q]$

Here, $F_{0}$ and $F$ refer to the fluorescence intensities at 440 nm in the absence and presence of a quencher, respectively. $\mathrm{K}_{\mathrm{SV}}(\mathrm{M})$ refers to the Stern-Volmer constant, which indicates the quenching efficiency, and $[\mathrm{Q}]$ is the concentration of the quencher.

## Binding stoichiometry and binding constant ( $\mathrm{K}_{\mathrm{a}}$ ) calculation

The binding ratio and binding constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for the complex ( $\mathbf{2 e - F e}{ }^{3+}$ ) was determined from fluorescence titration studies by using Job's continuous variation method and the Benesi-Hildebrand equation, respectively. ${ }^{48,49}$ For constructing Job's plot, various solutions of $\left(\mathbf{2} \mathbf{e}-\mathrm{Fe}^{3+}\right)$ with different mole ratios of $\mathbf{2 e}$ and $\mathrm{Fe}^{3+}$, were prepared by holding the overall concentration and volume of solution constant [ $10 \mu \mathrm{M}$ and 2 mL (THF/water, $6: 4 \mathrm{v} / \mathrm{v}$ )] and their fluorescence spectra were recorded. The graph was plotted between $\Delta \mathrm{I}$. $\chi_{2 \mathrm{e}}$ versus $\chi_{2 \mathrm{e}}$ ( $\Delta \mathrm{I}$ is the change of the fluorescence intensity of the sensor at 440 nm and $\chi_{2 \mathrm{e}}$ is the mole fraction of $2 \mathbf{e}$ in each case). The value of the mole fraction of $2 \mathbf{e}$ corresponding to the inflection point was then analyzed for the determination of binding stoichiometry of the complex. The binding constant value was determined from the Benesi-Hildebrand plot according to eq. $2^{60}$

$$
\begin{equation*}
\frac{1}{F_{O}-F}=\frac{1}{K_{a}\left(F_{0}-F_{\min }\right)\left[F e^{3+}\right]}+\frac{1}{F_{0}-F_{\min }} \tag{2}
\end{equation*}
$$

Here, $\mathrm{F}_{0}$ represents the fluorescence intensity of the free sensor $\mathbf{2 e}, \mathrm{F}$ represents the fluorescence intensity of $\mathbf{2 e}$ in the presence of different concentrations of $\mathrm{Fe}^{3+}$ in the solution and $\mathrm{F}_{\text {min }}$ is the fluorescence intensity at 440 nm at the maximum concentration of $\mathrm{Fe}^{3+}$ in solution. $\mathrm{K}_{\mathrm{a}}$ represents the binding constant, which was determined from the linear graph's slope and intercept plotted between $1 /\left(\mathrm{F}_{0}-\mathrm{F}\right)$ and $1 /\left[\mathrm{Fe}^{3+}\right]$.

## Measurement of limit of detection (LOD)

To determine the limit of detection, fluorescence titration of $\mathbf{2 e}$ with $\mathrm{Fe}^{3+}$ was performed at 440 nm . The limit of detection was calculated by using eq. 3
$L O D=\frac{3 \sigma}{S}$

Here, $\sigma$ represents the standard deviation of the blank sample and S is the slope refers to the calibration curve slope. ${ }^{61} \mathrm{~S}$ was determined using the plot of $\left(\mathrm{F} / \mathrm{F}_{0}\right)$ versus concentration of $\mathrm{Fe}^{3+}$. Here, $\mathrm{F}_{0}$ refers to the fluorescence intensity of $\mathbf{2 e}$ without $\mathrm{Fe}^{3+}$ and F refers to the fluorescence intensity at different $\mathrm{Fe}^{3+}$ concentrations. The concentration of 2e during the fluorescence titration experiments was kept at $10 \mu \mathrm{M}[\mathrm{THF} /$ water ( $6: 4, \mathrm{v} / \mathrm{v}$ )]. Each fluorescence titration was repeated thrice.

## 2. Spectral data of the synthesized compounds:

## 2,3-dihydrocyclopenta [d]pyrido[1,2-a]pyrimidin-10(1H)-one (5)

Yellow crystalline solid, Yield: $80 \% ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 9.10(\mathrm{~d}, 1 \mathrm{H})$, 7.70-7.67 (m, 1H), 7.62-7.60 (m, 1H), 7.14-7.10 (m, 1H), 3.06-3.00 (q, $J=8.0,4 \mathrm{H}), 2.21-2.13$ (m, 2H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): ~ \delta 170.82,155.76,151.17,135.23,127.32$, 125.92, 115.34, 114.92, 35.62, 28.03, 21.72.

## Ethyl 2-((3-cyanopyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate (2a)

Yellow crystalline solid, Yield: $92 \%$, $\mathrm{Mp} 90-95{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta$ $10.89(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .3 .35$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.58 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.98-1.90 (m, 2H), 1.33 (t, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 167.96,155.65,154.61,151.94$, 141.67, 115.79, 115.41, 105.82, 95.08, 59.89, 35.40, 28.45, 21.40, 14.60; ESI-MS: m/z 258 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS: (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$, 258.1164; found, 258.1240; FTIR (KBr, $v_{\max } \mathrm{cm}^{-1}$ ): 3079 (NH), 2964 and $2871(\mathrm{CH}), 2219(\mathrm{CN}), 1641(\mathrm{C}=\mathrm{O})$, 1579, 1485, 1408, 1253 (C-O).

## Ethyl 2-((3-cyano-4,6-diphenylpyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate (2b)

Yellow solid. Yield: $95 \%$. Mp $157-158{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 11.05$ (s, $1 \mathrm{H}), 8.05-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=8.0$ Hz, 2H), 3.57 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.64 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.06-1.99 (m, 2H), 1.35 (t, $J=8.0 \mathrm{~Hz}$, 3 H ); ${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 167.85,158.82,155.57,155.55,155.47,137.77$, 136.74, 130.40, 129.97, 129.05, 128.93, 128.30, 127.39, 116.16, 112.77, 105.87, 92.00, 59.90, 36.05, 28.59, 21.67, 14.66; ESI-MS: m/z 410 [M + H] ${ }^{+}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}, 410.1790$; found, 410.1874; FTIR (KBr, $\mathrm{v}_{\max } \mathrm{cm}^{-1}$ ): $3047(\mathrm{NH})$, 2852 and $2942(\mathrm{CH}), 2210(\mathrm{CN}), 1630(\mathrm{C}=\mathrm{O}), 1552,1358,1266(\mathrm{C}-\mathrm{O})$.

Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-phenylpyrid-2-yl)amino)cyclopent-1-ene-1carboxylate (2c)
Yellow solid; Yield: $95 \%$; $\mathrm{Mp} 158-160{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 11.02$ (s, $1 \mathrm{H}), 8.05-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64$ (t, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta$ 167.82, 161.08, 158.69, 155.63, 155.57, 155.16, 137.95, 130.28, 129.76, 129.00, 128.89, 127.37, 116.47, 114.49, 112.55, 105.76, 91.77, 59.84, 55.46, 36.02, 28.60, 21.68, 14.64; ESIMS: m/z $440[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}, 440.1896$; found, 440.1970; FTIR (KBr, $v_{\max } \mathrm{cm}^{-1}$ ): $3201(\mathrm{NH}), 2953$ and $2852(\mathrm{CH}), 2209(\mathrm{CN}), 1674$ ( $\mathrm{C}=\mathrm{O}$ ), 1622, 1540, 1365, 1253 (C-O).

## Ethyl 2-((3-cyano-4-phenyl-6-(p-tolyl)pyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate

 (2d)Yellow solid; Yield: $95 \%$; $\mathrm{Mp} 180-182{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 11.02$ (s, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta$ $167.85,165.38,158.87,155.64,155.45,140.79,136.85,135.05,129.91,129.67,129.03$, 128.29, 127.34, 116.26, 112.48, 105.74, 91.66, 59.88, 36.05, 28.59, 21.68, 21.46, 14.65; ESIMS: m/z $424[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}, 424.1947$ found,424.2025. FTIR (KBr, $v_{\max } \mathrm{cm}^{-1}$ ): $3094(\mathrm{NH}), 2938$ and $2863(\mathrm{CH}), 2210(\mathrm{CN}), 1637$ (C=O), 1560, 1360, 1274 (C-O).

Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-(p-tolyl)pyrid-2-yl)amino)cyclopent-1-ene-1carboxylate (2e)
Yellow solid; Yield: $96 \%$; Mp $188-190{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 10.99$ (s, 1 H ), 7.93 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.63 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.33-7.31$ (m, 3 H ), 7.07 (d, $J=0.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.33(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta$ $167.81,161.03,158.72,155.70,155.54,155.03,140.64,135.19,129.75,129.62,129.10$, $127.30,116.55,114.46,112.22,105.61,91.40,59.82,55.45,36.03,28.60,21.67,21.41$, 14.64; ESI-MS: m/z $454[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$,
454.2052; found, 454.2128. FTIR (KBr, $v_{\max } \mathrm{cm}^{-1}$ ): $3199(\mathrm{NH}), 2945$ and $2853(\mathrm{CH}), 2208$ (CN), $1635(\mathrm{C}=\mathrm{O}), 1531,1357,1255(\mathrm{C}-\mathrm{O})$.

## Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate (2f)

Yellow solid; Yield: $90 \%$; Mp 192-193 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 10.99$ (s, $1 \mathrm{H}), 7.67-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 101 MHz , CDCl3, ppm): $\delta 167.81,161.10,155.66,155.36,155.05,153.34,144.04,129.72,129.70$, $128.81,128.41,126.64,116.42,114.48,110.55,105.98,91.00,59.85,55.45,35.98,28.61$, 21.66, 14.63; ESI-MS: m/z $446[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, 446.1460$; found, 446.1536. FTIR (KBr, $\mathrm{v}_{\max } \mathrm{cm}^{-1}$ ): 3102 (NH), 2960 and $2851(\mathrm{CH}), 2210(\mathrm{CN}), 1622(\mathrm{C}=\mathrm{O}), 1536,1363,1253(\mathrm{C}-\mathrm{O})$.

## Ethyl 2-((3-cyano-6-(furan-2-yl)-4-(4-methoxyphenyl)pyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate ( 2 g )

Yellow solid;Yield: $89 \%$; Mp 160-162 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 10.96$ (s, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60-6.59(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( 101 MHz , $\mathrm{CDCl} 3, \mathrm{ppm}): \delta 167.83,161.07,155.72,155.50,155.14,152.96,149.72,144.62,129.77$, $128.82,116.56,114.42,112.53,111.93,110.32,105.77,91.06,59.87,55.46,35.76,28.58$, 21.61, 14.65; ESI-MS: m/z $430[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}, 430.1689$; found, 430.1759 ; FTIR ( $\mathrm{KBr}, \mathrm{v}_{\max } \mathrm{cm}^{-1}$ ): $3155(\mathrm{NH})$, 2955, and 2846 (CH), 2209 (CN), 1624 (C=O), 1549, 1356, 1255 (C-O).

## Ethyl

2-((3-cyano-6-(3-methoxyphenyl)-4-(4-methoxyphenyl)pyrid-2-yl)amino)cyclopent-1-ene-1-carboxylate (2h)

Yellow solid; Yield: $86 \%$; Mp $152-154{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 11.02$ (s, $1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), \quad 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.97(\mathrm{~m}$, $2 \mathrm{H}), 1.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 167.84,161.07,160.00$, $158.35,155.59,155.46,155.13,139.33,129.89,129.78,128.93,119.68,116.48,116.00$,
114.48, 112.77, 112.62, 105.75, 91.81, 59.87, 55.47, 55.36, 36.08, 28.60, 21.64, 14.66; ESIMS: m/z $470[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}, 470.2002$; found, 470.2078; FTIR (KBr, $v_{\max } \mathrm{cm}^{-1}$ ): $3183(\mathrm{NH})$, 2962 and $2845(\mathrm{CH}), 2208(\mathrm{CN}), 1643$ (C=O), 1560, 1358, 1258 (C-O).

## Ethyl 2-((3-cyano-6-(3-methoxyphenyl)-4-(p-tolyl)pyrid-2-yl)amino)cyclopent-1-ene-1-

 carboxylate (2i)Greenish-Yellow solid; Yield: $95 \%$; Mp 140-142 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta$ $11.03(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37$ (d, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.64 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.47 (s, 3H), 2.05-1.97 (m, 2H), 1.35 (t, $J=8.0 \mathrm{~Hz}$, 3H); ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ): $\delta 167.84,160.01,158.44,155.60,155.55,155.40$, 140.27, 139.31, 133.84, 129.90, 129.76, 128.19, 119.71, 116.29, 116.05, 112.80, 112.77, 105.81, 92.08, 59.88, 55.36, 36.07, 28.60, 21.65, 21.41, 14.64; ESI-MS: m/z 454 [M + H] ${ }^{+}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}, 454.2052$; found, 454.2129; FTIR $\left(\mathrm{KBr}, \mathrm{v}_{\max } \mathrm{cm}^{-1}\right): 3187(\mathrm{NH}), 2961$ and $2869(\mathrm{CH}), 2215(\mathrm{CN}), 1625(\mathrm{C}=\mathrm{O}), 1558,1357$, 1259 (C-O).
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized compounds







Fig. S1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2,3-dihydrocyclopenta $[d]$ pyrido $[1,2-a]$ pyrimidin- $10(1 \mathrm{H})$ one (5)


Fig. S2 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyanopyridin-2-yl)amino)cyclopent-1-ene-1carboxylate (2a)


Fig. S3 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-4,6-diphenylpyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2b)


Fig．S4 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2－（（3－cyano－4－（4－methoxyphenyl）－6－phenylpyridin－ 2－yl）amino）cyclopent－1－ene－1－carboxylate（2c）


Fig. S5 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-4-phenyl-6-(p-tolyl)pyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2d)



Fig. S6 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-(p-tolyl)pyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2e)


Fig. S7 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-4-(4-methoxyphenyl)-6-(thiophen-2-yl)pyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2f)


Fig. $\quad \mathbf{S 8} \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-6-(furan-2-yl)-4-(4-methoxyphenyl)pyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2g)


Fig. S9 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2-((3-cyano-6-(3-methoxyphenyl)-4-(4-methoxyphenyl)pyridin-2-yl)amino)cyclopent-1-ene-1-carboxylate (2h)



|  |  |  |  |  | $\stackrel{\vec{\infty}}{\stackrel{\rightharpoonup}{0}}$ | $\begin{aligned} & \text { g } \\ & \text { gi } \end{aligned}$ | $\stackrel{\%}{8}$ | 驫 | 命 | ¢ | $\begin{aligned} & \stackrel{n}{\sim} \\ & \stackrel{y}{n} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |




Fig．S10 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Ethyl 2－（（3－cyano－6－（3－methoxyphenyl）－4－（p－ tolyl）pyridin－2－yl）amino）cyclopent－1－ene－1－carboxylate（2i）
4. FTIR Spectra of synthesized compounds $\mathbf{2 a - 2 i}$


Fig. S11 FTIR spectrum of 2a


Fig. S12 FTIR spectrum of 2b


Fig. S13 FTIR spectrum of 2c


Fig. S14 FTIR spectrum of 2d


Fig. S15 FTIR spectrum of 2e


Fig. S16 FTIR spectrum of $\mathbf{2 f}$


Fig. S17 FTIR spectrum of $\mathbf{2 g}$


Fig. S18 FTIR spectrum of 2h


Fig. S19 FTIR spectrum of 2i

## 5. Photophysical graphs of compound 2e



Fig. S20 Bar graph showing normalized emission intensities of $\mathbf{2 a - 2} \mathbf{i}$ in THF/water (6:4, v/v).


Fig. S21 Excitation emission spectrum of $\mathbf{2 e}$ in THF/water ( $6: 4, \mathrm{v} / \mathrm{v}$ ).


Fig. S22 Fluorescence spectrum of 2e at different excitation wavelengths ( $330-380 \mathrm{~nm}$ ).


Fig. S23 Job's plot for determining the stoichiometry of $\mathbf{2 e}$ and $\mathrm{Fe}^{3+}$ in THF/water (6:4, v/v).


Fig. S24 Benesi-Hildebrand plot of $\mathbf{2 e}(10 \mu \mathrm{M})$ with $\mathrm{Fe}^{3+}(0-100$ eq.) using the emission at 440 nm .


Fig. S25 Stern-Volmer plot for $\mathbf{2 e}$.


Fig. S26 Effect of pH on the fluorescence intensity of $\mathbf{2 e}(10 \mu \mathrm{M})$.


Fig. S27 Fluorescence changes of whatman filter paper before and after dipped in $\mathrm{Fe}^{3+}$ solution under UV light at 365 nm .


Fig. S28 Irreversible nature of $\mathbf{2 e}(10 \mu \mathrm{M})$ for $\mathrm{Fe}^{3+}$ with addition of $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA.

## 6. Optimized Cartesian Coordinates of Different Stationary Points

## Ligand



| 6 | 0.053570 | 4.129461 | 0.307310 |
| ---: | ---: | ---: | ---: |
| 6 | 2.305991 | 3.910481 | -0.524103 |
| 6 | 0.181806 | 5.513831 | 0.281540 |
| 1 | -0.874881 | 3.679942 | 0.639461 |
| 6 | 2.425026 | 5.298027 | -0.551682 |
| 1 | 3.139472 | 3.308503 | -0.869995 |
| 6 | 1.370462 | 6.126420 | -0.144641 |
| 1 | -0.653100 | 6.133831 | 0.597740 |
| 1 | 3.350674 | 5.745913 | -0.902545 |
| 6 | 3.080874 | -1.310502 | -0.035755 |
| 6 | 4.161524 | -1.031851 | -0.895795 |
| 6 | 3.179936 | -2.424863 | 0.810279 |
| 6 | 5.283944 | -1.845044 | -0.919477 |
| 1 | 4.108483 | -0.181319 | -1.567937 |
| 6 | 4.306733 | -3.246257 | 0.802926 |
| 1 | 2.383475 | -2.646053 | 1.512479 |
| 6 | 5.364530 | -2.960042 | -0.069832 |
| 1 | 6.109311 | -1.638520 | -1.592763 |
| 1 | 4.351164 | -4.089511 | 1.480586 |
| 6 | 1.509055 | 7.626497 | -0.142456 |
| 1 | 0.587453 | 8.112209 | -0.478500 |
| 1 | 1.715623 | 7.996294 | 0.869613 |
| 1 | 2.329254 | 7.954966 | -0.786767 |
| 8 | 6.511658 | -3.695853 | -0.165829 |
| 6 | 6.635161 | -4.869043 | 0.647858 |
| 1 | 5.842452 | -5.591507 | 0.424670 |
| 1 | 7.603577 | -5.302246 | 0.395075 |
| 1 | 6.615275 | -4.618773 | 1.714293 |
| 1 | -1.926586 | -1.443298 | -0.011475 |
| 6 | -2.975086 | 0.234937 | 0.272710 |
| 6 | -3.122220 | 1.707699 | 0.565438 |
| 6 | -4.199429 | -0.375154 | 0.174602 |
| 6 | -4.601276 | 1.833431 | 0.993891 |
| 1 | -2.898338 | 2.282788 | -0.340450 |
| 1 | -2.419550 | 2.047327 | 1.328156 |
| 6 | -5.322277 | 0.621926 | 0.360398 |
| 1 | -4.663527 | 1.761287 | 2.084566 |
| 1 | -5.037432 | 2.790755 | 0.699042 |
| 1 | -6.127748 | 0.236781 | 0.992957 |
| 1 | -5.775575 | 0.880388 | -0.606527 |
| 6 | -4.375833 | -1.774952 | -0.132878 |
| 8 | -3.461018 | -2.605385 | -0.263401 |
| 8 | -5.677179 | -2.119741 | -0.267230 |
| 6 | -5.954853 | -3.512439 | -0.572793 |
| 1 | -5.467730 | -3.769721 | -1.518380 |
| 1 | -5.523197 | -4.138341 | 0.214202 |
| 6 | -7.459028 | -3.660685 | -0.651682 |
| 1 | -7.927521 | -3.386570 | 0.298215 |
| 1 | -7.873618 | -3.027360 | -1.441638 |
| 1 | -7.711867 | -4.701436 | -0.875051 |
|  |  |  |  |

## Ligand- $\mathrm{Fe}^{3+}$ Complex

| Number of imaginary frequencies : 0 |  |
| :---: | :---: |
|  |  |
| The smallest frequencies are : $11.6783 \quad 23.1827 \quad 32.5559 \mathrm{~cm}(-1)$ Electronic energy : -1596.7385476 |  |
|  |  |
| Zero-point correction= 0.49644 | 0.496449 (Hartree/Particle) |
| Thermal correction to Energy $=0.52$ | 0.528348 |
| Thermal correction to Enthalpy $=0.5$ | 0.529292 |
| Thermal correction to Gibbs Free Energy= | $\mathrm{gy}=0.430763$ |
| Sum of electronic and zero-point Energies= | gies $=\quad-1596.242098$ |
| Sum of electronic and thermal Energies= | $\mathrm{s}=\quad-1596.210199$ |
| Sum of electronic and thermal Enthalpies= | ies $=\quad-1596.209255$ |
| Sum of electronic and thermal Free Energies= | Ergies $=-1596.307785$ |

Cartesian Coordinates

| 6 | -0.039353 | -0.701636 | -0.085349 |
| ---: | ---: | ---: | ---: |
| 6 | -0.458551 | 0.663992 | -0.059803 |
| 6 | -1.844482 | 0.939589 | -0.061033 |
| 6 | -2.693279 | -0.173998 | -0.084717 |
| 6 | -2.189563 | -1.491435 | -0.089175 |
| 1 | -3.761563 | -0.007575 | -0.044679 |
| 7 | 1.334052 | -0.924301 | -0.143643 |
| 7 | -0.859100 | -1.732346 | -0.093136 |
| 6 | 0.574118 | 1.631995 | -0.034663 |
| 7 | 1.589338 | 2.20920 | -0.008301 |
| 6 | -3.075459 | -2.665161 | -0.064847 |
| 6 | -2.571433 | -3.917259 | 0.341683 |
| 6 | -4.429237 | -2.578366 | -0.439643 |
| 6 | -3.399635 | -5.030363 | 0.391614 |
| 1 | -1.530216 | -4.005116 | 0.631285 |
| 6 | -5.248356 | -3.702327 | -0.395319 |
| 1 | -4.845271 | -1.640941 | -0.793076 |
| 6 | -4.754842 | -4.944933 | 0.028653 |
| 1 | -2.995287 | -5.984114 | 0.719691 |
| 1 | -6.287922 | -3.616309 | -0.698290 |
| 6 | -2.382590 | 2.307624 | -0.039392 |
| 6 | -3.498289 | 2.632921 | -0.839028 |
| 6 | -1.815933 | 3.313543 | 0.760951 |
| 6 | -4.005894 | 3.920612 | -0.854208 |
| 1 | -3.946615 | 1.876875 | -1.475801 |
| 6 | -2.328021 | 4.608932 | 0.764375 |
| 1 | -0.995750 | 3.082013 | 1.433950 |
| 6 | -3.424972 | 4.919950 | -0.053152 |
| 1 | -4.851426 | 4.180511 | -1.482296 |
| 1 | -1.880534 | 5.354007 | 1.409810 |
| 6 | -5.648471 | -6.152881 | 0.117247 |


| 1 | -5.154743 | -7.041476 | -0.289436 |
| ---: | ---: | ---: | ---: |
| 1 | -5.892079 | -6.373968 | 1.163861 |
| 1 | -6.588596 | -5.998690 | -0.418835 |
| 8 | -4.000980 | 6.149073 | -0.137349 |
| 6 | -3.489632 | 7.202187 | 0.691096 |
| 1 | -2.443646 | 7.422469 | 0.451580 |
| 1 | -4.104701 | 8.075476 | 0.471619 |
| 1 | -3.579685 | 6.948352 | 1.752854 |
| 1 | 1.919282 | -0.105134 | -0.349651 |
| 6 | 2.072761 | -2.017111 | 0.015367 |
| 6 | 1.634009 | -3.417317 | 0.283390 |
| 6 | 3.489790 | -1.930042 | -0.048156 |
| 6 | 2.936529 | -4.127544 | 0.720956 |
| 1 | 1.227286 | -3.824640 | -0.652182 |
| 1 | 0.825741 | -3.457028 | 1.016862 |
| 6 | 4.094613 | -3.271245 | 0.153135 |
| 1 | 2.996100 | -4.132875 | 1.812489 |
| 1 | 2.976159 | -5.159350 | 0.371693 |
| 1 | 4.983731 | -3.232666 | 0.789863 |
| 1 | 4.436641 | -3.645971 | -0.825906 |
| 6 | 4.222139 | -0.672890 | -0.241244 |
| 8 | 3.607793 | 0.388115 | -0.527567 |
| 8 | 5.511944 | -0.759406 | -0.097621 |
| 6 | 6.314139 | 0.466534 | -0.279083 |
| 1 | 6.055361 | 0.881693 | -1.256031 |
| 1 | 6.013413 | 1.167752 | 0.505313 |
| 6 | 7.763276 | 0.062433 | -0.172353 |
| 1 | 7.976966 | -0.371622 | 0.808019 |
| 1 | 8.024407 | -0.659012 | -0.951074 |
| 1 | 8.384067 | 0.953805 | -0.301315 |
| 26 | 3.569943 | 2.347176 | 0.055836 |

