Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information for the manuscript:

Monomers and dimers of C₆₀ and C₇₀ in the radical anion salts with dyes,

 $(astrophloxine^+)_2(C_{60}^{\bullet-})_2$ and $(astrophloxine^+)_2(C_{70}^{-})_2$: suppression of the $C_{60}^{\bullet-}$

dimerization by π -stacking

Pavel A. Sobov,^a Maxim A. Faraonov,^a Salavat S. Khasanov,^b Akihiro Otsuka,^c

Hideki Yamochi,^c Hiroshi Kitagawa,^c Dmitri V. Konarev^a

^{*a*} Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Moscow region, 142432 Russia

^{*b*} Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432 Russia ^{*c*} Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Supporting information.

Components	C ₆₀	C ₇₀	astrophloxine	C ₆ H ₄ Cl ₂	$(astrophloxine^+)_2$	(astrophloxine ⁺) ₂
					$(C_{60}^{\bullet-})_2 \cdot C_6 H_4 Cl_2 \cdot C_5 H_{14} (1)$	$(C_{70})_2$ (2)
C ₆₀	524s				524w	
- 00	574s				574s	
	1180s				-	
C	1427s	457			1396s	
C_{70}		457W 534s				- 530m*
		564m				-
		576s				576m
		642m				-
		6/3m 704m				680w
		1132w				1127m
		1413w				-
		1429s				1399m 1427s*
Astrophloxine			423m		425w	424w
Astrophioxine			460m		-	-
			467m		476w	474w
			532w; 542w		512w; 525w	530w*
			548w		-	-
			681w		- 680m	680w
			688w		693w	-
			725m		725w	-
			736m		745s	749m
			750s		754s	757w
			767s		772s	774s
			8688 910s		855m 924s	858W 922s
			9368		9248 940w	942w
			962s		962w	962w
			1006s		1019m	1019m
			1029m		1031w	-
			1064s		1075s	1075s
			1074w 1102s		1084m	1088m
			1111m		1114s; 1126s	1114s; 1127s
			1144w		1155m	1159m
			1174m		1174m	1175m
			1181s 1222m		- 1220m	- 1220m
			1222111		1250m	1250m
			1268		1273m	1275m
			1298w		1305w	1305w
			1323m		1338m	1337m
			1356s		1368m	1366m
			14128		1428s	142/s*
			14438 1478m		14348 1477m	14308 1477m
			1539s		1556s	1557s
C-H-Cl				663w	659w	
C ₆ , 14C12				751s	753w	
				1035m	1032w	
				1120s	-	
				1462m	1465w	

Table S1. IR-spectra (cm⁻¹ in KBr pellets) of starting compounds and salts **1** and **2**.

*bands coincide, w - weak, m - middle, s – strong intensity.

Fig. S1. Spectrum of $(astrophloxine^+)_2(C_{60}^{\bullet-})_2 \cdot C_6H_4Cl_2 \cdot C_6H_{14}$ (1) in a KBr pellet prepared in anaerobic conditions. Spectrum of starting astrophloxine in KBr pellet is given for comparison. Bands of C_{60} are marked by asterisk "*".

Fig. S2. Spectrum of $(astrophloxine^+)_2(C_{60}^{\bullet-})_2 \cdot C_6H_4Cl_2 \cdot C_6H_{14}$ (1) in a KBr pellet prepared in anaerobic conditions in the 400-7800 cm⁻¹ range. Charge transfer band with maximum at about 3300 cm⁻¹ is shown by red line.

Fig. S3. Spectrum of $(astrophloxine^+)_2(C_{70}^-)_2$ (2) in a KBr pellet prepared in anaerobic conditions. Spectrum of starting astrophloxine in a KBr pellet is given for comparison.

The formation of contacts between fullerene dimers and cations

Fig. S4. Formation of short H(astrophloxine⁺)…C(Fullerene dimer) contacts in the crystal structure of **1** (for the dimeric $(C_{60})_2$ form in type I with the 58% occupancy) (a) and **2** (b). These contacts are shown by green dashed lines.

Fitting of SQUID data

Singlet-triplet (isolated dimer) model with Heisenberg Hamiltonian

$$H = -2J(S_1 \cdot S_2)$$
$$\chi = \frac{2N_A g^2 \mu_B^2}{3k_B T} \times \frac{1}{1 + \frac{1}{3}\exp\left(-\frac{2J}{k_B T}\right)}$$

References are given in the main text.

Fig. S5. Temperature dependence of molar magnetic susceptibility for polycrystalline 1 measured in the 1.9-300 K range (black squares). Two contributions can be resolved: from the Curie impurities (blue curve) originated from 3.8% of S = 1/2 spins and from the sample (red curve with squares). The latter contribution is obtained by the subtraction of the contribution from the Curie impurities from the experimental curve.

Fig. S6. EPR signal from polycrystalline **1** measured at 6 K. Signal was fitted by one Lorentzian line as shown below, parameters of this line are given in the main text.

Fig. S7. EPR signal from polycrystalline **2** at 296 K, the signal was fitted by two narrow lines with $g_1 = 2.0025$ and the linewidth of 0.21 mT and $g_2 = 2.0008$ and the linewidth of 0.12 mT. This signal can be attributed to the paramagnetic impurities localized on fullerene C₇₀ since integral intensity of the signal corresponds to the contribution of less than 1% of S = 1/2 spins per one C₇₀ anion.