SUPPORTING INFORMATION

Synthesis and characterisation of neodymium based MOFs for application in carbon dioxide reduction to syngas

Linia Gedi Marazani,¹ Maureen Gumbo,² Lendly Moyo,¹ Banothile C. E. Makhubela³ and Gift Mehlana^{*1}

¹Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, Private Bag 9055 Senga Road Gweru, Zimbabwe

²Chalmers University of Technology, Department of Chemistry and Chemical Engineering,

SE-412 96, Göteborg, Sweden.

³Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa

Scheme 1: Synthetic scheme for JMS-10

Scheme 2: Synthetic scheme for JMS-11

	JMS-10	JMS-11	
Empirical formula	$C_{36}H_{18}Nd_2N_6O_{14}$	$C_{47.25}H_{44.25}Nd_2N_{9.75}O_{16.75}$	
Formula weight (gmol ⁻¹)	1067.08	1305.15	
Crystal system	Monoclinic	Monoclinic	
T/K	173	143	
Space group	$P2_{1}/c$	$P2_{1}/c$	
a/Å	26.3857(12)	27.4090(3)	
b/Å	14.0955(7)	11.1853(2)	
c/Å	16.9025(8)	16.97965(19)	
$\alpha^{\prime \circ}$	90	90	
β/°	98.528 (2)	98.5206(12)	
γ/°	90	90	

 Table S1: Crystallographic and refinement parameters of JMS-10 and JMS-11

Volume/Å ³	6216.878 (5)	5148.13 (13)
Z	4	4
Calculated density (g/cm ³)	1.136	1.684
F(000)	2080	2600
μ, mm ⁻¹	1.701	15.91
Crystal size/mm ³	0.090 x 0.120 x 0.120	0.196 x 0.084 x 0.029
Radiation	0.71073	1.54184
20 max	60.90°	75.7°
Goodness of fit S	1.15	1.03
Final R indexes [I>= 2σ (I)]	0.0737 (15969)	0.0541(8615)
Final wR ₂ indexes [all data]	0.1648 (19050)	0.1417(10133)
Highest peak	5.14	3.46
Deepest hole	-2.84	-1.93

Figure S1: A comparison of the simulated patterns of JMS-10 and JMS-11

Figure S2: Variable temperature PXRD for (a) JMS-10 and (b) JMS-11, comparing the plots of the samples ran in the VT chamber with a sample ran at the standard sample stage.

Figure S3: Elementary mapping of JMS-10 crystal as obtained from SEM-EDX

Figure S4: Elementary mapping of the JMS-11 crystal as obtained from SEM-EDX

Scheme 2: Functionalisation of the Nd MOFs using ruthenium *p*-cymene. Due to the low loading of ruthenium we expect that some sites will be left unfunctionalized.

Figure S5: Proton NMR for Ru(II)@JMS-10

Figure S6: Proton NMR for JMS-10

Figure S7: XPS of (a) JMS-10 and (b) Ru(II)@JMS-10

Figure S8: XPS of (a) JMS-11 and (b) Ru(II)@JMS-11

Figure S9: PXRD plots for the and Ru functionalised JMS-10 and JMS-11 before and after catalysis

Figure S10: Photoluminescence results for JMS-10 and its functionalised form.

Figure S11: Photoluminescence of JMS-11 and its functionalised form.