Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information (ESI)

Facile formation of tetrazole-thiolato Pd(II) and -Pt(II) complexes through deprotonation or oxidative addition using organic tetrazole-thiones

Hyoung Soon Kwon¹, Geon Hyeong Park¹, Huiyeong Ju², Eunji Lee¹, Yong-Joo Kim^{*1}

¹Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Korea ²Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea

Contents

 Table - SM1. X-ray data collection and structure refinements.

Figure S1. ¹H NMR spectrum of **1** (400 MHz, CDCl₃, 300 K) **Figure S2.** ¹³C NMR spectrum of **1** (101 MHz, CDCl₃, 300 K) **Figure S3.** ³¹P NMR spectrum of **1** (162 MHz, CDCl₃, 300 K)

Figure S4. ¹H NMR spectrum of **2** (400 MHz, CDCl₃, 300 K) **Figure S5.** ¹³C NMR spectrum of **2** (101 MHz, CDCl₃, 300 K) **Figure S6.** ³¹P NMR spectrum of **2** (162 MHz, CDCl₃, 300 K)

Figure S7. ¹H NMR spectrum of **3** (300 MHz, CDCl₃, 300 K) **Figure S8.** ¹³C NMR spectrum of **3** (75 MHz, CDCl₃, 300 K) **Figure S9.** ³¹P NMR spectrum of **3** (122 MHz, CDCl₃, 300 K)

Figure S10. ¹H NMR spectrum of **4** (600 MHz, CDCl₃, 300 K) **Figure S11.** ¹³C NMR spectrum of **4** (151 MHz, CDCl₃, 300 K) **Figure S12.** ³¹P NMR spectrum of **4** (243 MHz, CDCl₃, 300 K)

Figure S13. ¹H NMR spectrum of **5** (400 MHz, CDCl₃, 300 K) **Figure S14.** ¹³C NMR spectrum of **5** (101 MHz, CDCl₃, 300 K) **Figure S15.** ³¹P NMR spectrum of **5** (162 MHz, CDCl₃, 300 K)

Figure S16. ¹H NMR spectrum of **6** (400 MHz, CDCl₃, 300 K) **Figure S17.** ¹³C NMR spectrum of **6** (101 MHz, CDCl₃, 300 K) **Figure S18.** ³¹P NMR spectrum of **6** (162 MHz, CDCl₃, 300 K)

Figure S19. ¹H NMR spectrum of **7** (300 MHz, CDCl₃, 300 K) **Figure S20.** ¹³C NMR spectrum of **7** (75 MHz, CDCl₃, 300 K) Figure S21. ³¹P NMR spectrum of 7 (122 MHz, CDCl₃, 300 K)

Figure S22. ¹H NMR spectrum of **8** (600 MHz, CDCl₃, 300 K) **Figure S23.** ¹C NMR spectrum of **8** (151 MHz, CDCl₃, 300 K) **Figure S24.** ³¹P NMR spectrum of **8** (243 MHz, CDCl₃, 300 K)

Figure S25. ¹H NMR spectrum of 9 (600 MHz, CDCl₃, 300 K) Figure S26. ³¹P NMR spectrum of 9 (243 MHz, CDCl₃, 300 K)

Figure S27. ¹H NMR spectrum of **10** (600 MHz, CDCl₃, 300 K) **Figure S28.** ¹³C NMR spectrum of **10** (151 MHz, CDCl₃, 300 K) **Figure S29.** ³¹P NMR spectrum of **10** (243 MHz, CDCl₃, 300 K)

Figure S30. ¹H NMR spectrum of **11** (400 MHz, CDCl₃, 300 K) **Figure S31.** ¹³C NMR spectrum of **11** (101 MHz, CDCl₃, 300 K) **Figure S32.** ³¹P NMR spectrum of **11** (162 MHz, CDCl₃, 300 K)

Figure S33. ¹H NMR spectrum of **12** (400 MHz, CDCl₃, 300 K) **Figure S34.** ¹³C NMR spectrum of **12** (101 MHz, CDCl₃, 300 K) **Figure S35.** ³¹P NMR spectrum of **12** (162 MHz, CDCl₃, 300 K)

Figure S36. ¹H NMR spectrum of **13** (600 MHz, CDCl₃, 300 K) **Figure S37.** ¹³C NMR spectrum of **13** (151 MHz, CDCl₃, 300 K) **Figure S38.** ³¹P NMR spectrum of **13** (243 MHz, CDCl₃, 300 K)

Figure S39. ¹H NMR spectrum of **14** (600 MHz, CDCl₃, 300 K) **Figure S40.** ¹³C NMR spectrum of **14** (151 MHz, CDCl₃, 300 K) **Figure S41.** ³¹P NMR spectrum of **14** (243 MHz, CDCl₃, 300 K)

Figure S42. ¹H NMR spectrum of **15** (600 MHz, CDCl₃, 300 K) **Figure S43.** ¹³C NMR spectrum of **15** (151 MHz, CDCl₃, 300 K) **Figure S44.** ³¹P NMR spectrum of **15** (243 MHz, CDCl₃, 300 K)

Figure S45. ¹H NMR spectrum of **16** (400 MHz, CDCl₃, 300 K) **Figure S46.** ¹H NMR spectrum of **16** (101 MHz, CDCl₃, 300 K) **Figure S47.** ³¹P NMR spectrum of **16** (162 MHz, CDCl₃, 300 K)

Figure S48. ¹H NMR spectrum of **17** (400 MHz, CDCl₃, 300 K) **Figure S49.** ¹³C NMR spectrum of **17** (101 MHz, CDCl₃, 300 K) **Figure S50.** ³¹P NMR spectrum of **17** (162 MHz, CDCl₃, 300 K)

Figure S51. ¹H NMR spectrum of 18 (400 MHz, CDCl₃, 300 K) Figure S52. ¹³C NMR spectrum of 18 (101 MHz, CDCl₃, 300 K) Figure S53. ³¹P NMR spectrum of 18 (162 MHz, CDCl₃, 300 K) Figure S54. ¹H NMR spectrum of 18, 19 Mix (400 MHz, CDCl₃, 300 K) Figure S55. ³¹P NMR spectrum of 18, 19 Mix (162 MHz, CDCl₃, 300 K) Figure S56. ¹H {³¹P} NMR spectrum of 18 (400 MHz, CDCl₃, 300 K)

Figure S57. ¹H NMR spectrum of 20, 21 Mix (400 MHz, CDCl₃, 300 K) Figure S58. ¹³C NMR spectrum of 20, 21 Mix (101 MHz, CDCl₃, 300 K) Figure S59. ³¹P NMR spectrum of 20, 21 Mix (162 MHz, CDCl₃, 300 K)

Figure S60. ¹H NMR spectrum of 22 (400 MHz, CDCl₃, 300 K)

Figure S61. ¹³C NMR spectrum of 22 (101 MHz, CDCl₃, 300 K)

Figure S62. ¹H NMR spectrum of **23** (400 MHz, CDCl₃, 300 K) **Figure S63.** ¹³C NMR spectrum of **23** (101 MHz, CDCl₃, 300 K) **Figure S64.** ³¹P NMR spectrum of **23** (162 MHz, CDCl₃, 300 K)

Figure S65. ¹H NMR spectrum of 24 (400 MHz, CDCl₃, 300 K) Figure S66. ¹³C NMR spectrum of 24 (151 MHz, CDCl₃, 300 K) Figure S67. ³¹P NMR spectrum of 24 (162 MHz, CDCl₃, 300 K) Figure S68. ¹H NMR spectrum of 24, 25 Mix (400 MHz, CDCl₃, 300 K) Figure S69. ³¹P NMR spectrum of 24, 25 Mix (162 MHz, CDCl₃, 300 K) Figure S70. ¹H{³¹P} NMR spectrum of 24 (400 MHz, CDCl₃, 300 K)

Figure S71. ¹H NMR spectrum of **26** (400 MHz, CDCl₃, 300 K) **Figure S72.** ¹³C NMR spectrum of **26** (101 MHz, CDCl₃, 300 K) **Figure S73.** ³¹P NMR spectrum of **26** (162 MHz, CDCl₃, 300 K)

Figure S74. ¹H NMR spectrum of **27** (400 MHz, CDCl₃, 300 K) **Figure S75.** ³¹P NMR spectrum of **27** (162 MHz, CDCl₃, 300 K)

Figure S76. ¹H NMR spectrum of **28** (600 MHz, CDCl₃, 300 K) **Figure S77.** ¹³C NMR spectrum of **28** (151 MHz, CDCl₃, 300 K) **Figure S78.** ³¹P NMR spectrum of **28** (243 MHz, CDCl₃, 300 K)

Figure S79. ¹H NMR spectrum of 29 (600 MHz, CDCl₃, 300 K) Figure S80. ¹³C NMR spectrum of 29 (151 MHz, CDCl₃, 300 K) Figure S81. ³¹P NMR spectrum of 29 (243 MHz, CDCl₃, 300 K)

Figure S82. ¹H NMR spectrum of **30** (400 MHz, CDCl₃, 300 K) **Figure S83.** ¹³C NMR spectrum of **30** (101 MHz, CDCl₃, 300 K)

Figure S84. ¹H NMR spectrum of **31** (400 MHz, CDCl₃, 300 K) **Figure S85.** ¹³C NMR spectrum of **31** (101 MHz, CDCl₃, 300 K)

Figure S86. ¹H NMR spectrum of **32** (400 MHz, CDCl₃, 300 K) **Figure S87.** ¹³C NMR spectrum of **32** (101 MHz, CDCl₃, 300 K)

Figure S88. ¹H NMR spectrum of **33** (400 MHz, CDCl₃, 300 K) **Figure S89.** ¹³C NMR spectrum of **33** (101 MHz, CDCl₃, 300 K)

Figure S90. ¹H NMR spectrum of **34** (400 MHz, CDCl₃, 300 K) **Figure S91.** ¹³C NMR spectrum of **34** (101 MHz, CDCl₃, 300 K)

Figure S92. ¹H NMR spectrum of 35 (400 MHz, CDCl₃, 300 K) Figure S93. ¹³C NMR spectrum of 35 (101 MHz, CDCl₃, 300 K)

Figure S94. ¹H-NMR spectrum of *N*-methylene proton regions (germinal coupling) of 6membered complex, 18

Figure S95. ¹H-NMR spectra of methyl signal of 6-membered complexes, **18** (the below is normal ¹H-NMR. The above is phosphorus decoupled spectrum)

Figure S96 The Pt(II) Hydride region in the variable ¹H-NMR (400 MHz) spectra of complex 16.

	4	10·(CH ₂ Cl ₂)	12	16	18·(CH ₂ Cl ₂)
formula	$C_{15}H_{28}N_4P_2PdS$	$C_{29}H_{44}Cl_2N_8P_2PdS_2$	$C_{18}H_{34}N_8P_2PdS_2$	$C_{15}H_{28}N_4P_2PtS$	$C_{11}H_{26}Cl_2N_4P_2PtS$
fw	464.81	808.08	594.99	553.50	574.35
temperature, K	296(2)	223(2)	223(2)	223(2)	223(2)
crystal size (mm ³)	$0.68 \times 0.48 \times 0.36$	0.15×0.10×0.07	0.13×0.12×0.10	0.20×0.11×0.08	0.15×0.10×0.07
crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/c$	C2221	P21/c	P21/n	P-1
<i>a</i> , Å	11.2692(4)	12.1391(7)	10.481(2)	9.802(2)	11.205(7)
<i>b</i> , Å	10.0561(4)	19.4487(11)	14.414(4)	19.264(4)	11.285(7)
<i>c</i> , Å	18.5744(6)	15.6956(8)	18.274(5)	12.273(3)	17.208(13)
□, deg	94.113(2)	90	106.241(7)	113.057(7)	99.31(2)
<i>V</i> , Å ³	2099.51(13)	3705.6(4)	2650.6(11)	2132.3(7)	2027(2)
Ζ	4	4	4	4	4
d_{cal} , g cm ⁻³	1.471	1.448	1.491	1.724	1.881
\Box , mm ⁻¹	1.139	0.876	1.000	6.832	7.439
<i>F</i> (000)	952	1664	1224	1080	1112
T _{min}	0.5113	0.880	0.6681	0.340	0.400
T _{max}	0.6845	0.941	0.810	0.611	0.616
No. of reflns Measured	45218	70396	57571	79387	78215
No. of reflns Unique	5271	4619	5200	4178	7953
No. of reflns with $I > 2\sigma(I)$	4906	4004	4310	3722	7054
No. of params Refined	209	204	320	212	379
Max., in $\Delta \rho$ (e Å ⁻³)	0.317	0.550	0.856	1.096	1.859
Min., in $\Delta \rho$ (e Å ⁻³)	-0.298	-0.312	-0.613	-0.800	-0.631
$GOF \text{ on} F^2$	1.068	1.053	1.021	1.068	1.042
R1ª	0.0190	0.0313	0.0303	0.0202	0.0312
wR2 ^b	0.0496	0.0568	0.0818	0.0449	0.0781
R (all data)	0.0216	0.0451	0.0411	0.0255	0.0370
wR_2^a (all data)	0.0524	0.0606	0.0927	0.0470	0.0813

 Table - SM1
 X-ray data collection and structure refinements

 ${}^{a}R1 = \Sigma ||F_{o}| - |F|| / \Sigma |F_{o}|, {}^{b}wR2 = \Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]^{1/2}$

	20	23	31
formula	C H N D D+S	C H N D D+S	CHNOS
formula	$C_{20}II_{28}IN_{4}F_{2}FIS$	502 45	224 40
IW	015.55	202(2)	324.40
temperature, K	225(2)	223(2)	223(2)
crystal size (mm ³)	0.16×0.14×0.09	0.12×0.0/×0.0/	0.2/×0.11×0.08
crystal system	monoclinic	triclinic	monoclinic
space group	$P2_{1/c}$	P-1	$P2_1/n$
a, A	10.6808(11)	6.5317(9)	12.572(5)
<i>b</i> , Å	12.6140(13)	9.9539(15)	8.002(2)
<i>c</i> , Å	20.6847(16)	14.2527(19)	16.371(5)
β , deg	102.441(3)	94.011(4)	101.725(11)
<i>V</i> , Å ³	2321.4(4)	922.9(2)	1612.5(9)
Ζ	4	2	4
d_{cal} , g cm ⁻³	1.756	1.812	1.336
μ , mm ⁻¹	6.285	7.882	0.210
<i>F</i> (000)	1200	488	680
T _{min}	0.442	0.451	0.946
T _{max}	0.602	0.608	0.984
No. of reflns Measured	43785	32917	20093
No. of reflns Unique	5850	4599	3172
No. of reflns with $I > 2\sigma(I)$	4452	4204	2484
No. of params Refined	253	182	208
Max., in $\Delta \rho$ (e Å ⁻³)	1.809	0.718	0.713
Min., in $\Delta \rho$ (e Å ⁻³)	-1.616	-0.551	-0.779
GOF on F^2	1.057	1.092	1.109
R1ª	0.0449	0.0223	0.0547
wR2 ^b	0.0924	0.0497	0.1650
R (all data)	0.0662	0.0270	0.0814
wR_2^a (all data)	0.0997	0.0513	0.2001

 $\overline{{}^{a}R1 = \Sigma ||F_{o}| - |F|| / \Sigma |F_{o}|, {}^{b}wR2 = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}}$

-13.86

⁹⁰ 85 80 75 70 65 60 Figure S32. ³¹P NMR spectrum of 11 (162 MHz, CDCl₃, 300 K)

 Iéo
 Iáo
 Iáo</th

-11.43

Figure S80. ¹³C NMR spectrum of 29 (151 MHz, CDCl₃, 300 K)

Figure S88. ¹H NMR spectrum of 33 (400 MHz, CDCl₃, 300 K)

Figure S96 The Pt(II) Hydride region in the variable ¹H-NMR (400 MHz) spectra of complex 16.

50°C, 24 h		 			du
50°C, 6 h		 	Ju.	M	
50°C, 3 h		 	A	Jh	×
50°C, 1 h				^	
r.t	M	A			

-8.5 -9.0 -9.5 -10.0 -10.5 -11.0 -11.5 -12.0 -12.5 -13.0 -13.5 -14.0 -14.5 -15.0 -15.5 -16.0 -16.5 -17.0 -17.5 -18.0 -18.5 -19.0 -19.5 -20.