Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

An Efficient and Step-economical Synthesis of β -Carboline Tethered Imidazopyrido[3,4-*b*]indoles from Acetals

Vaishali,^{a,b*} Naveen Banyal,^{a,c} Shubham Sharma,^d Manpreet Singh,^e Chandi C. Malakar,^f and Virender Singh^{*c}

^a Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.

^b Department of Chemistry, BK Birla Institute of Higher Education, Pilani, Rajasthan, India-333031.

^c Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.

^d Department of Chemistry, GLA University, Mathura, UP, 281406, India.

^e Department of Chemistry, Baba Farid Group of Institutions, Bathinda, India

^f Department of Chemistry, NIT Manipur, Imphal, India

Email id: vaishalisingla4361@gmail.com; virender.singh@cup.edu.in

Supporting Information

Table of Contents

1.	¹ H-NMR and ¹³ C-NMR spectra of new products	2-31
2.	LCMS data of 15A product	32
3.	Photophysical studies of synthesised compounds	33-38

1.0 ¹H and ¹³C-NMR of the new products

Figure S1. ¹H-NMR spectrum of 14.

Figure S2. ¹³C-NMR spectrum of 14.

Figure S3. ¹H-NMR spectrum of 15A.

Figure S4. ¹³C-NMR spectrum of 15A.

Figure S5. ¹H-NMR spectrum of 15B.

Figure S6. ¹³C-NMR spectrum of 15B.

Figure S7. ¹H-NMR spectrum of 15C.

Figure S8. ¹³C-NMR spectrum of 15C.

Figure S9. Extended ¹³C-NMR spectrum of 15C.

Figure S10. ¹H-NMR spectrum of 15D.

Figure S11. ¹³C-NMR spectrum of 15D.

Figure S12. Extended ¹³C-NMR spectrum of 15D.

Figure S13. ¹H-NMR spectrum of 15E.

Figure S14. ¹³C-NMR spectrum of 15E.

Figure S15. ¹H-NMR spectrum of 15F.

Figure S16. ¹³C-NMR spectrum of 15F.

Figure S17. Extended ¹³C-NMR spectrum of 15F.

Figure S18. ¹H-NMR spectrum of 15G.

Figure S19. ¹³C-NMR spectrum of 15G.

Figure S20. ¹H-NMR spectrum of 16A.

Figure S21. ¹³C-NMR spectrum of 16A.

Figure S22. ¹H-NMR spectrum of 16B.

Figure S23. ¹³C-NMR spectrum of 16B.

Figure S25. ¹³C-NMR spectrum of 16C.

Figure S26. ¹H-NMR spectrum of 16D.

Figure S27. ¹³C-NMR spectrum of 16D.

Figure S28. ¹H-NMR spectrum of 16E.

Figure S29. ¹³C-NMR spectrum of 16E.

Figure S30. ¹H-NMR spectrum of 16F.

Figure S31. ¹³C-NMR spectrum of 16F.

Figure S32. ¹H-NMR spectrum of 16G.

Figure S33. ¹³C-NMR spectrum of 16G.

Figure S34. ¹H-NMR spectrum of 16H.

Figure S35. ¹³C-NMR spectrum of 16H.

Figure S36. ¹H-NMR spectrum of 17A.

Figure S37. ¹³C-NMR spectrum of 17A.

Figure S38. ¹H-NMR spectrum of 17B.

Figure S39. ¹³C-NMR spectrum of 17B.

Figure S40. Extended ¹³C-NMR spectrum of 17B.

Figure S41. ¹H-NMR spectrum of 17C.

Figure S42. ¹³C-NMR spectrum of 17C.

Figure S43. ¹H-NMR spectrum of 17E.

Figure S44. ¹³C-NMR spectrum of 17E.

Figure S45. ¹H-NMR spectrum of 17F.

Figure S46. ¹³C-NMR spectrum of 17F.

Figure S47. ¹H-NMR spectrum of 17G.

Figure S48. ¹³C-NMR spectrum of 17G.

Figure S49. ¹H-NMR spectrum of 18.

Figure S50. ¹³C-NMR spectrum of 18.

Figure S51. ¹H-NMR spectrum of **19A.**

Figure S52. ¹³C-NMR spectrum of 19A.

Figure S53. ¹H-NMR spectrum of 19B.

Figure S54. ¹³C-NMR spectrum of 19B.

Figure S55. ¹H-NMR spectrum of 19C.

Figure S56. ¹³C-NMR spectrum of **19C.**

Figure S57. LCMS spectrum of 15A.

2.0 Photophysical Studies of the Synthesized Compounds:

The fluorescent quantum yield (Φ) was measured relative to quinine sulfate ($\Phi = 0.546$) (0.1 M H₂SO₄ at 350 nm excitation) as a reference compound. For the measurement of UV-Vis absorption and fluorescence emission of samples, stock solution (1.0 mM) was prepared in CH₂Cl₂ and diluted to final concentration (5.0 μ M) using CH₂Cl₂. These quantum yields (QY) were calculated by using the equation as follows:

$$\Phi_{s} = \Phi_{R} \times \frac{I_{s}}{I_{R}} \times \frac{A_{R}}{A_{s}} \times \frac{\eta_{s}^{2}}{\eta_{R}^{2}}$$

R - Reference; S - Sample

where ϕ is the quantum yields, η is the refractive index of the solvent, *I* is the integrated fluorescence intensity and *A* is the absorbance.

Figure S58. Photophysical properties and graphical data of bis-carboline derivatives:

14	UV-Vis	Fluorescence		$\Phi_{\rm F}$
17	λ_{Ex}	λ_{Em}	Intensity	
Que n	(nm)	(nm)		
H N H	297.26	449.12	323.27	0.34
	379.65	446.72	92.49	0.39

154	UV-Vis	Fluorescence		$\Phi_{\rm F}$
15A	λ_{Ex}	λ_{Em}	Intensity	
	(nm)	(nm)		
N N	303.34	497.87	98.09	0.14
	395.16	496.96	50.74	0.15

15B	UV-Vis	Fluorescence		$\Phi_{\rm F}$
	λ_{Ex}	λ_{Em}	Intensity	
	(nm)	(nm)		
	304.14	498.93	122.71	0.19
	402.86	499.84	87.19	0.41

150	UV-Vis	Fluorescence		$\Phi_{\rm F}$
150	λ_{Ex}	λ_{Em}	Intensity	
	(nm)	(nm)		
	309.26	468.10	69.14	0.17
	358.21	465.35	48.41	0.21

15F	UV-Vis	Fluorescence		$\Phi_{\rm F}$
IJE	λ_{Ex}	λ_{Em}	Intensity	
	(nm)	(nm)		
N N N	297.89	446.83	257.57	0.24
	380.60	442.90	71.50	0.23

Figure S59. Photophysica	l properties and	1 graphical	data o	of
--------------------------	------------------	-------------	--------	----

 λ_{Em}

(nm)

451.43

Fluorescence

Intensity

109.31

UV-Vis

 λ_{Ex}

(**nm**)

300.78

bis-carboline derivatives:

15F

 $\Phi_{\rm F}$

0.10

16A	UV-Vis	Fluorescence		$\Phi_{\rm F}$
	λ_{Ex}	λ_{Em}	Intensity	-
CO ₂ Me CO ₂ Me	(nm)	(nm)		
	291	492.90	120.75	0.10
	381	493.93	46.69	0.13

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
16B	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ Me CO ₂ Me	(nm)	(nm)		
N N N	290.70	494.84	119.93	0.11
	356.30	482.98	45.09	0.13

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
16C	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ Me CO ₂ Me	(nm)	(nm)		
	286.22	491.06	100.24	0.15
	369.41	488.95	40.07	0.20

			0.30 ¬	
Fluo	rescence	$\Phi_{\rm F}$	0.25	
Em	Intensity	-	0.20	(
m)				
.20	124.36	0.10	SQ 0.10 -	17
.90	54.35	0.18	0.30	
		1	0.25 -	
luoro	escence	Φ_{F}		
	35			1/

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
16E	λ_{Ex}	λ_{Em}	Intensity	-
CO ₂ Me CO ₂ Me	(nm)	(nm)		
	286.97	492.20	124.36	0.10
	372.43	490.90	54.35	0.18

	UV-Vis	Fluorescence	Φı
16F			
		35	

λ_{Ex}	λ_{Em}	Intensity	
(nm)	(nm)		
291.52	488	128.72	0.12
343.32	484.92	71.93	0.18

	UV-Vis Fluorescen		rescence	$\Phi_{\rm F}$
16G	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ Me CO ₂ Me	(nm)	(nm)		
	287.02	497.87	81.30	0.13
	366.80	485.97	40.79	0.21

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
16H	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ Me CO ₂ Me	(nm)	(nm)		
Sol N N	287.82	487.47	86.75	0.08
MeO MeO	369.41	479.73	42.82	0.11

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
17A	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ i-PrCO ₂ i-Pr N	(nm)	(nm)		
	289.29	496.96	128.24	0.13
	373.14	498.03	51.13	0.12

	UV-Vis	Fluorescence		$\Phi_{\rm F}$
17B	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ i-PrCO ₂ i-Pr	(nm)	(nm)		
	288.78	499.04	139.35	0.16

381.40	493.93	69.50	0.34

	UV-Vis	Fluor	$\Phi_{\rm F}$	
17C	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ <i>i</i> -PrCO ₂ <i>i</i> -Pr	(nm)	(nm)		
	289.58	490.90	150.07	0.12
	388.29	493.03	57.97	0.16

	UV-Vis	Fluor	$\Phi_{\rm F}$	
17E	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ <i>i</i> -PrCO ₂ <i>i</i> -Pr	(nm)	(nm)		
S N N	295.40	456.16	331.07	0.34
	379.29	454.02	92.42	0.37

1 7 F	UV-Vis	Fluorescence		$\Phi_{\rm F}$
171	λ_{Ex}	λ_{Em}	Intensity	
CO ₂ i-PrCO ₂ i-Pr	(nm)	(nm)		
	297.27	446.08	267.59	0.35
<i>#</i> ~	381.41	438.10	76.26	0.55

150	UV-Vis	Fluo	rescence	$\Phi_{\rm F}$
17G	$\lambda_{Ex}(nm)$	λ_{Em}	Intensity	
		(nm)		

CO ₂ i-PrCO ₂ i-Pr	295.66	448.19	106.47	0.21
	372.76	453.03	40.01	0.275