Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

## Supporting Information

# Facile Preparation of Injectable, Thermosensitive, and Physically Cross-linked Hemostatic Hydrogel with Rapid Gelation and Robust Network

Xue Wang,<sup>a</sup> Wentao Liu,<sup>b,\*</sup> Yue Wang,<sup>a</sup> Zhaosheng Hou,<sup>c</sup> Pengbo She,<sup>a</sup> Yaozhen

Yang,<sup>a</sup> Xiuxiu Li,<sup>a</sup> Xiaolong Wang,<sup>d</sup> Jintong Liu,<sup>a</sup> Xiangzheng Liu,<sup>a</sup> and Jing Xu<sup>a,\*</sup>

<sup>a</sup>Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China

<sup>b</sup>Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065,

P. R. China

<sup>c</sup>College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, P. R. China

<sup>d</sup>Laboratory Management Office, Shandong University of Traditional Chinese Medicine, Jinan 250353, P. R. China

\*Corresponding Authors:

Wentao Liu, *E-mail*: liuwt@scu.edu.cn, https://orcid.org/0000-0002-0493-6709 Jing Xu, *E-mail*: xujing@qlu.edu.cn

#### **Experimental Section**

**Synthesis of 2-((diethylcarbamothioyl)thio) Acetic Acid (RAFT CTA):** The synthesis of RAFT CTA was carried out as follows<sup>1</sup>: sodium chloroacetate (5.17 g, 44.5 mmol) and NaDC (10.0 g, 44.4 mmol) were dissolved in 100 mL deionized water. The solution was stirred for 24 h at room temperature. HCl (3 mol/L) was then added to the solution to precipitate the product. The product was filtered and recrystallized from acetone to obtain the final product (white powder, 27% yield).



**Figure S1.** Temperature dependences of the dynamic moduli (G' and G'') of the G/HA solutions with different proportions of components. A) The G/HA solutions prepared using 15 w/w% gelatin and 0.6%, 0.8%, and 1.0% (w/w) HA. B) The G/HA solutions prepared using 12.5 w/w% gelatin and 0.6%, 0.8%, and 1.0% (w/w) HA. C) The G/HA solutions prepared using 10 w/w% gelatin and 0.6%, 0.8%, and 1.0% (w/w) HA. D) The LCST of L-P-1, L-P-2, and L-P-3.

For the preparation of the hydrogels  $G_{15}/HA_{0.6}/L$ -P-1, L-P-1 was difficult to dissolve in water due to its strong hydrophobic end-group effect, resulting in the inability to prepare the L-P-1 solution with higher concentration (e.g. 20% and 25% (w/w)). So only the  $G_{15}/HA_{0.6}/L$ -P-1<sub>15</sub> hydrogels were prepared (**Table S1**).

**Table S1.** Preparation of different  $G_{15}/HA_{0.6}/L-P-1_{15}$  hemostatic hydrogel samples and their formulation.

| No. | Sample                                       | G(w/w %) | HA(w/w %) | L-P-1 (w/w %) | G/HA:L-P-1<br>(w/w %) <sup>a</sup> |
|-----|----------------------------------------------|----------|-----------|---------------|------------------------------------|
| 1   | $G_{15}/HA_{0.6}/L-P-1_{15}(1:9)$            | 15       | 0.6       | 15            | 1:9                                |
| 2   | $G_{15}/HA_{0.6}/L$ -P-1 <sub>15</sub> (2:8) | 15       | 0.6       | 15            | 2:8                                |
| 3   | $G_{15}/HA_{0.6}/L$ -P-1 <sub>15</sub> (3:7) | 15       | 0.6       | 15            | 3:7                                |
|     |                                              |          |           |               |                                    |

<sup>a</sup> G/HA:L-P-1 (w/w %) indicates the weight ratio of G/HA to L-P-1.



Figure S2. Temperature dependences of the dynamic moduli (G' and G'') of the  $G_{15}/HA_{0.6}/L-P-1_{15}$  hydrogels with different weight ratios of G/HA to L-P-1. A)  $G_{15}/HA_{0.6}/L-P-1_{15}$  (1:9). B)  $G_{15}/HA_{0.6}/L-P-1_{15}$  (2:8). C)  $G_{15}/HA_{0.6}/L-P-1_{15}$  (3:7).

**Table S2.** Preparation of different  $G_{15}/HA_{0.6}/L$ -P-2 hemostatic hydrogel samples and their formulation.

| No. | Sample                                       | G(w/w %) | HA(w/w %) | L-P-2 (w/w<br>%) | G/HA: L-P-2<br>(w/w %) <sup>b</sup> |
|-----|----------------------------------------------|----------|-----------|------------------|-------------------------------------|
| 1   | $G_{15}/HA_{0.6}/L-P-2_{15}(1:9)$            | 15       | 0.6       | 15               | 1:9                                 |
| 2   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>15</sub> (2:8) | 15       | 0.6       | 15               | 2:8                                 |
| 3   | $G_{15}/HA_{0.6}/L-P-2_{15}(3:7)$            | 15       | 0.6       | 15               | 3:7                                 |
| 4   | $G_{15}/HA_{0.6}/L$ -P- $2_{20}(1:9)$        | 15       | 0.6       | 20               | 1:9                                 |
| 5   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>20</sub> (2:8) | 15       | 0.6       | 20               | 2:8                                 |
| 6   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>20</sub> (3:7) | 15       | 0.6       | 20               | 3:7                                 |
| 7   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>25</sub> (1:9) | 15       | 0.6       | 25               | 1:9                                 |
| 8   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>25</sub> (2:8) | 15       | 0.6       | 25               | 2:8                                 |
| 9   | $G_{15}/HA_{0.6}/L$ -P-2 <sub>25</sub> (3:7) | 15       | 0.6       | 25               | 3:7                                 |

<sup>b</sup> G/HA:L-P-2 (w/w %) indicates the weight ratio of G/HA to L-P-2.



**Figure S3.** Temperature dependences of the dynamic moduli (G' and G'') of the  $G_{15}/HA_{0.6}/L$ -P-2 hydrogels with different proportions of components. The temperature at the intersection of G' and G'' represents the phase transition temperature (LCST). A)

 $\begin{array}{l} G_{15}/HA_{0.6}/L-P-2_{15} \ (1:9). \ B) \ G_{15}/HA_{0.6}/L-P-2_{15} \ (2:8). \ C) \ G_{15}/HA_{0.6}/L-P-2_{15} \ (3:7). \ D) \\ G_{15}/HA_{0.6}/L-P-2_{20} \ (1:9). \ E) \ G_{15}/HA_{0.6}/L-P-2_{20} \ (2:8). \ F) \ G_{15}/HA_{0.6}/L-P-2_{20} \ (3:7). \ G) \\ G_{15}/HA_{0.6}/L-P-2_{25} \ (1:9). \ H) \ G_{15}/HA_{0.6}/L-P-2_{25} \ (2:8). \ I) \ G_{15}/HA_{0.6}/L-P-2_{25} \ (3:7). \end{array}$ 



Figure S4. Temperature dependence of the dynamic moduli (G' and G'') of 20% L-P.

A) L-P-2. B) L-P-3.



**Figure S5.** Viscoelastic moduli and viscosity analysis of the hydrogels  $G_{15}/HA_{0.6}/L$ - $P_{25}$  with different proportions of components. A) Shear-thinning behavior of hydrogels. The dependences of dynamic moduli (G' and G'') on dynamic frequency for the hydrogels B)  $G_{15}/HA_{0.6}/L$ - $P_{225}$  and C)  $G_{15}/HA_{0.6}/L$ - $P_{325}$  with different weight ratios of G/HA to L-P.



Figure S6. The cell viability of the blank group, the  $G_{15}/HA_{0.6}/L-P-1_{15}$  and  $G_{15}/HA_{0.6}/L-P-2_{25}$  hydrogel groups after incubation for 24 h.

#### **Movie Caption List**

Movie S1. Demonstration of burst pressure testing of the hydrogel  $G_{15}/HA_{0.6}/L-P-3_{25}$ (1:9) adhered to pigskin at  $36.5 \pm 0.5$  °C.

**Movie S2.** Experimental demonstration of the rapid thermoresponsive sol-gel transition and strong adhesion of the hydrogel  $G_{15}/HA_{0.6}/L-P-3_{25}$  (1:9) on the wet surface of glass at  $36.5 \pm 0.5$  °C.

**Movie S3.** Experimental demonstration of the rapid thermoresponsive sol-gel transition of the hydrogel  $G_{15}/HA_{0.6}/L$ -P-3<sub>25</sub> (1:9) on the wet surface of finger joint and the stable wet adhesion of hydrogel under ultrasonic treatment.

### References

(1) Xing, X.; Yang, H.; Tao, M.; Zhang, W., An overwhelmingly selective colorimetric sensor for Ag+ using a simple modified polyacrylonitrile fiber. *Journal of Hazardous Materials* 2015, 297, 207-216.