## **Supporting information**

## Enhancing Li<sup>+</sup> transport via nano-porous cellulose membrane with anion-sorbent for high-performance lithium-ion batteries

Kang Ma<sup>a</sup><sup>b</sup>, Xin Song<sup>a</sup>, Jian Wang<sup>a</sup>, Jiawei Chen<sup>a</sup>, Zongmin Zheng<sup>a</sup>, and Jianmin Zhang<sup>a\*</sup>

a.College of Mechanical and Electrical Engineering, National Engineering Research Center for Intelligent Electrical Vehicle Power System (Qingdao), Qingdao University, Qingdao, 266071, China

b.School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

\*Corresponding author, E-mail: zhangjm@qdu.edu.cn (J. Zhang).



Figure S1. (a, b, c, and d) Pore size distributions of the CF, CF-0.4, CF-0.6, CF-0.8,

and CF-0.6Z membranes.



Figure S2. SEM images of (a) CF-0.6, (b) CF-0.6Z membranes.







Figure S4. TG curves of different membranes.



Figure S5. Stress-strain curves of the PP membrane.



Figure S6. (a) LSV curves of SS/membrane/Li cells with different membranes; (b) Nyquist plots of SS/membrane/SS cells; Li<sup>+</sup> transference number with (c) CF and (d) CF-0.6 membranes; The charge transfer resistances ( $R_{ct}$ ) at different temperatures of symmetric Li/Li cells with (e) PP and (f) CF-0.6Z membranes.



Figure S7. The charging-discharging profiles of cells with different membranes: (a) 4 C; (b) 2 C.



Figure S8. Zeta potential of electrolyte before and after 12 h immersion of the CF-0.6 and CF-0.6Z membranes.

Table S1. Resistance ( $R_b$  and  $R_{ct}$ ) and ionic conductivity ( $\sigma$ ) of symmetrical SS/membrane/SS cells with different membranes.

| Sample  | D     | R <sub>b</sub> | σ              | R <sub>ct</sub> |
|---------|-------|----------------|----------------|-----------------|
|         | (µm)  | $(\Omega)$     | $(mS cm^{-1})$ | $(\Omega)$      |
| РР      | 25.0  | 1.7            | 0.74           | 230             |
| CF      | 113.0 | 7.8            | 0.76           | 154             |
| CF-0.6  | 110.0 | 5.3            | 1.1            | 124             |
| CF-0.6Z | 118.5 | 4.0            | 1.43           | 87              |

Table S2. The specific values for lithium ion transference number calculation.

| Sample  | I <sub>0</sub> (μA) | $I_{s}\left(\mu A\right)$ | $R_{0}\left(\Omega ight)$ | $R_{s}\left(\Omega ight)$ | $t_{Li}^{+}$ |
|---------|---------------------|---------------------------|---------------------------|---------------------------|--------------|
| РР      | 31.6                | 26.5                      | 296                       | 333                       | 0.45         |
| CF      | 44                  | 34.5                      | 196                       | 213                       | 0.41         |
| CF-0.6  | 46                  | 35                        | 178                       | 199.9                     | 0.52         |
| CF-0.6Z | 72.8                | 60.1                      | 108.7                     | 116.2                     | 0.57         |

| Composite<br>membrane                 | Electrolyte<br>uptake<br>(%) | $\sigma$<br>(mS·cm <sup>-1</sup> ) | Discharging<br>Capacity<br>(mAh·g <sup>-1</sup> ) | Capacity<br>retention rate<br>(%/cycle<br>number/C-rate) | Reference |
|---------------------------------------|------------------------------|------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------|
| Hydroxyapatite<br>/CNF                | 162                          | 0.81                               | 2 C/100                                           | 81/100/0.5 C                                             | 1         |
| ZIF-67@CNF                            | 460                          | 1.55                               | 4 C/110                                           | 88.4/100/0.5 C                                           | 2         |
| BC@ZIF-67                             | 230                          | 0.837                              | 2 C/85                                            | 91/100/0.2 C                                             | 3         |
| ZIF-8-CNF                             |                              | 1.41                               | 4 C/100                                           | 88/100/0.5 C                                             | 4         |
| ZIF-8@BC                              | 340                          | 1.12                               | 3 C/105                                           | 89/100/0.5 C                                             | 5         |
| Regenerated<br>Cellulose<br>Separator | 425                          | 1.05                               | 2 C/129                                           | 81/100/0.5 C                                             | 6         |
| CF-0.6Z                               | 423                          | 1.43                               | 4 C/114                                           | 95/300/1.0 C                                             | This work |

Table S3. Performance comparison of cellulose-based composite membrane in

LiFePO<sub>4</sub>/membrane/Li cells.

## References

- 1 Y. Liu, C. Li, C. Li, Z. Liang, X. Hu, H. Liu, Z. Zhang, M. Cui, G. Chen, J. Wan, X. Zhang and J. Tao, ACS Appl. Energy Mater, 2023, 6, 3862-3871.
- 2 X. Sun, W. Xu, X. Zhang, T. Lei, S.-Y. Lee and Q. Wu, J. Energy Chem, 2021, **52**, 170-180.
- 3 Q. Huang, C. Zhao and X. Li, Cellulose, 2021, 28, 3097-3112.
- 4 X. Sun, M. Li, S. Ren, T. Lei, S. Y. Lee, S. Lee and Q. Wu, J. Power Sources, 2020,
  454, 227878.

- 5 S. Zhang, J. Luo, M. Du, F. Zhang and X. He, Cellulose, 2022, **29**, 5163-5176.
- 6 Y. Wang, X. Liu, J. Sheng, H. Zhu and R. Yang, ACS Sustain. Chem. Eng, 2021, 9, 14756-14765.