Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Metal ion supported mesoporous silica materials for the removal of

sulfamethizole from water

Ni Yan,[#] Long-Hui Duan,[#] Min He, Wen Luo, Zhitong Ou and Jing Wang*

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

[#]These authors contributed equally to this work.

Corresponding author, e-mail: wjwyj82@gxu.edu.cn

Table. S1 Structural parameters of Ni-AAPTMS-SBA-15.

Materials	BET surface	Average pore	Total pore volume	
	area (m ² /g)	diameter (Å)	(cm^3/g)	
AAPTMS-SBA-15[1]	212.6	126.3	0.67	
Ni-AAPTMS-SBA-15	142.7	123.5	0.37	

Table. S2 Kinetic parameters of Ni-AAPTMS-SBA-15 for SIZ adsorption.

Kinetic models	R ²	К	$Q_{e,Cal}(mg\!/g)$
PFO	0.9886	0.0006	3.99
PSO	0.9997	0.0379	31.45

Table. S3 Isotherm parameters of Ni-AAPTMS-SBA-15 for SIZ adsorption

Langmuir Freundlich			Temkin			Dubinin-Radushkevic					
Qm	K_L	R ²	$K_{\rm F}$	n	R ²	B_1	K _T	R ²	Q_{m}	Е	R ²
(mg/g)	(L/mg)		(L/g)				(L/mol)		(mg/g)	(kJ/mol)	
188.68	0.04	0.9902	15.75	1.78	0.9970	39.19	0.49	0.9851	169.81	21.32	0.9346

Table S4 Comparison of Ni-AAPTMS-SBA-15 with other reported SAs adsorbents.

Materials	Targets	argets Equilibrium		Removal	Ref.
		time (min)	(mg/g)	efficiency (%)	
Carbonaceous nanospheres	SDZ	40	96.6	96.8	[2]
HKUST-1@CNS	SMZ	120	31.64	96.1	[3]
Fe-N-BC	SMZ	480	42.9	93.4	[4]
BCN	SMZ	30	28.75	-	[5]
Activated Carbon	SDZ	60	66.22	99	[6]
CD-DGO	SMZ	120	143.08		[7]
	SDZ	120	149.01	-	[/]
Ni-AAPTMS-SBA-15	SIZ	2	188.68	90	This work

References

- [1] Y. Zhou, J. Wang, Q. Zhao, H. Cai, H. Zhang, Selective adsorption and removal of Congo red based on ethylenediamine functionalized mesoporous silica. Chemistryselect, 7(2022), e202203280.
- [2] X. Hu, Y. Huang, Z. Pan, S. Li, Q. Li, W. Lin, Preparation of carbonyl, hydroxyl, and amino-functionalized microporous carbonaceous nanospheres from syrupbased waste to remove sulfamethazine, Environmental Science and Pollution Research 29 (2022) 27688-27702.
- [3] G. Jain, P. Bhattacharyya, M.K. Mandal, R.G. Chaudhuri, S. Chakrabarti, pHdependent adsorption of the sulfamethoxazole antibiotic on HKUST-1@CNS nanocomposite corroborating efficiency, mechanistic, and kinetic studies, New Journal of Chemistry 48 (2024) 1781-1791.
- [4] Y. Diao, R. Shan, M. Li, J. Gu, H. Yuan, Y. Chen, Efficient adsorption of a sulfonamide antibiotic in aqueous solutions with N-doped magnetic biochar: performance, mechanism, and reusability, ACS Omega 8 (2022) 879-892.
- [5] Y. Sun, J. Bian, Q. Zhu, Sulfamethoxazole removal of adsorption by carbon Doped boron nitride in water, Journal of Molecular Liquids 349 (2022) 118216.
- [6] S. Aslan, M. Şirazi, Adsorption of sulfonamide antibiotic onto activated carbon

prepared from an agro-industrial by-product as low-cost adsorbent: equilibrium, thermodynamic, and kinetic studies, Water Air and Soil Pollution 231 (2020) 222.

[7] H. Yu, K. Zheng, X. Xu, X. Liu, B. Zhao, H. Ding, Z. Yu, C. Deng, Preparation of β-cyclodextrin/dopamine hydrochloride-graphene oxide and its adsorption properties for sulfonamide antibiotics, Environmental Science and Pollution Research 29 (2022) 70192-70201.

Fig. S1 The adsorption of SIZ by AAPTMS-SBA-15 in the absence and presence of different metal ions.

Fig. S2 The adsorption of SIZ by AAPTMS-SBA-15 at different pH.

Fig. S3 The adsorption capacity of Ni²⁺ by AAPTMS-SBA-15 at different pH values.

Fig. S4 Zata potential of Ni-AAPTMS-SBA-15 and the distribution coefficient of SIZ at different pH values.

Fig. S5 Nonlinear fitting of adsorption kinetics of SIZ by Ni-AAPTMS-SBA-15.

Fig. S6 The effect of concentration on SIZ adsorption and its nonlinear fitting.

Fig. S7 UV-Vis spectra of SDZ (a), SMR (b), SMZ (c), STZ (d), and SIZ (e) after adsorption by usingNi-AAPTMS-SBA-15.

Fig. S8 FT-IR spectra of Ni-AAPTMS-SBA-15 before and after adsorption of SIZ.

Fig. S9 The size information of SIZ.

Fig. S10 Leaching efficiency after regeneration.