Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Pyrolysis of Naphthol Functionalized Polytriarylamine for Efficient Sodium-

Ion Storage

Taehyoung Kim^{1,a}, Seongwook Chae^{2,a}, Taewoong Lee^{2,a}, Young Rok Yoon³, Jae Bin Park²,

Byeong Jin Kim², Kyoungeun Lee¹, In Young Song¹, Hwanhui Yun¹, Wang-Eun Lee¹,

Kyuyoung Heo¹, Sang Youl Kim^{3*}, Jinhee Lee^{1*}, and Jin Hong Lee^{2*}

¹Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea

² School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea

³ Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

^a These authors contributed equally to this work.

*To whom correspondence should be addressed: kimsy@kaist.ac.kr, jinhee@krict.re.kr, and jinhong.lee@pusan.ac.kr

PDNOH	S _{BET} ^a (m ² /g)	V _{total} ^b (cm ³ /g)	Pore size ^c (nm)	S _{micro} ^d (m²/g)	V ^e _{micro} (cm ³ /g)
@650 °C	298.3	0.109	1.583	321.1	0.100
@800 °C	112.5	0.034	1.355	102.0	0.033

Table S1. Surface properties of PDNOHs.

^{*a*}BET surface area, ^{*b*}Total pore volume, ^{*c*}Average pore diameter, ^{*d*}Surface are of micropore calculated by t-Plot analysis, ^{*e*}Pore volume of micropore calculate by t-Plot analysis.

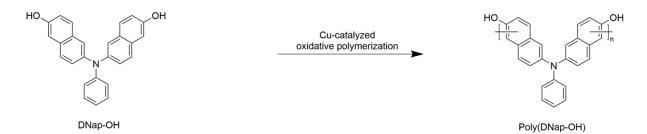


Figure S1. Polymerization scheme of Poly(DNap-OH).

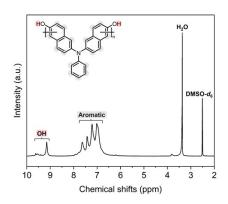


Figure S2. ¹H-NMR spectrum of Poly(DNap-OH) in DMSO-*d*₆.

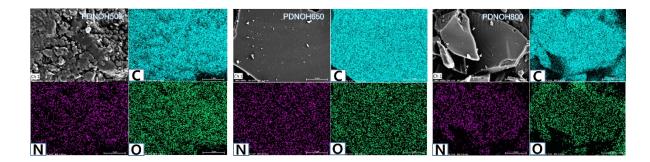


Figure S3. SEM-EDS mapping of PDNOHs.

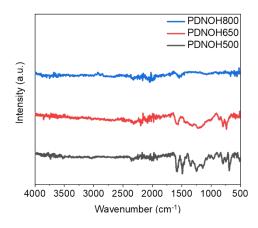


Figure S4. FT-IR spectra of PDNOHs.

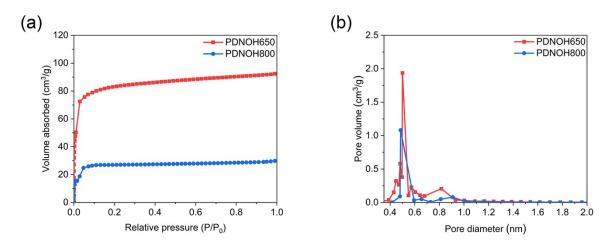


Figure S5. (a) Ar adsorption isotherms, (b) Pore-size distribution of PDNOHs.

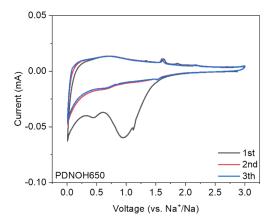


Figure S6. CV results of PDNOH-650.

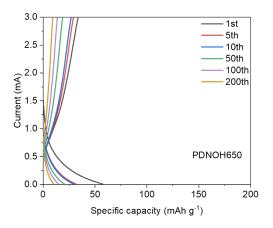


Figure S7. Charge/discharge curves of PDNOH-650.

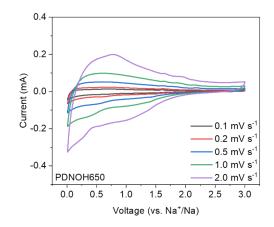


Figure S8. CV results of PDNOH-650 at various sweep rates.

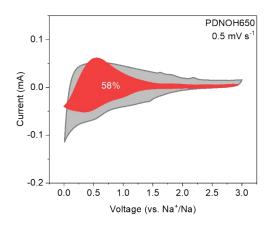
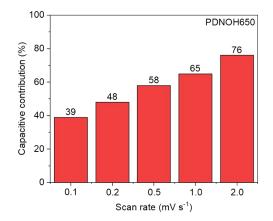



Figure S9. Contribution of surface-induced Na⁺ storage in PDNOH-650 (0.5 mV s⁻¹).

Figure S10. Contribution of surface-induced Na⁺ storage at various sweep rates in PDNOH-650.

References

[1] T. Kim, T. Lee, Y. R. Yoon, W. S. Heo, S. Chae, J. W. Kim, B.-K. Kim, S. Y. Kim, J. Lee,

J. H. Lee, Small, 2024, 2400333.