Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Performances of New Cyclotriphosphazene Derivatives in Photocatalytic Reactions

Table of Contents

MALDI-MS, ¹ H, ¹³ C and ³¹ P NMR Spectra	2-14
Molar Absorption Coeffiecent Studies	15
Singlet Oxygen Measurement of Methylene Blue	16-17
¹ H NMR spectra of PS + 1,3-cyclohexadiene after irradiation with green light	18-19

--- 21.50

Figure S2. The proton-decoupled ^{31}P NMR spectrum of compound 1 in CDCl₃

Figure S4. The ^{13}C NMR spectrum of compound 1 in CDCl_3

- 17.52

Figure S6. The proton-decoupled ³¹P NMR spectrum of compound 2 in CDCl₃

Figure S8. The 13 C NMR spectrum of compound 2 in CDCl₃

Figure S10. The ¹H NMR spectrum of compound 4 in CDCl₃

Figure S12. The MALDI TOF spectrum of compound 5 in $CDCI_3$

Figure S14. The ¹³C NMR spectrum of compound 5 in CDCl₃

Figure S16. The proton-decoupled ^{31}P NMR spectrum of compound 6 in CDCl₃

Figure S18. The ¹³C NMR spectrum of compound 6 in CDCl₃

Figure S19. The MALDI TOF spectrum of compound 7

Figure S20. The proton-decoupled ³¹P NMR spectrum of compound 7 in CDCl₃

Figure S22. The 13 C NMR spectrum of compound 7 in CDCl₃

Figure S24. The proton-decoupled ³¹P NMR spectrum of compound 8 in CDCl₃

Figure S26. The ¹³C NMR spectrum of compound 8 in CDCl₃

Figure S27. UV-Vis spectra of a) BODIPY 3 b) BODIPY-cyclotriphosphazene 6 in DCM (10-2 µM)

Figure S28. UV-Vis spectra of a) BODIPY 4 b) BODIPY-cyclotriphosphazene 7 in DCM (10-2 µM)

Figure S29. UV-Vis spectra of a) BODIPY 5 b) BODIPY-cyclotriphosphazene 8 in DCM (10-2 µM)

Figure S30. Decrease in absorbance spectrum of DPBF in the presence of BODIPY 3 (2.0 μ M, in DCM, λ = 516 nm, 2.1 mW cm⁻²)

Figure S31. Decrease in absorbance spectrum of DPBF in the presence of BODIPY 6 (2.0 μ M, in DCM, λ = 516 nm, 2.1 mW cm⁻²)

Figure S33 ¹H NMR spectra of (a) **PS-5**, (b) **PS-4** in the presence of 1,3-cyclohexadiene (100 eq.) after irradiation with green light for 1 h.

Figure S34 ¹H NMR spectrum of **TPP** in the presence of 1,3-cyclohexadiene (100 eq.) after irradiation with green light