Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Study of the effect of the interaction between the active center and the ligand environment of ionomer-based catalyst on the oxygen evolution reaction

Yong Yan^a, Jie Zhang^a, Ruilin Wang^{a,b}, Jinwei Chen^{a,b}*

*Corresponding authors. Tel.: 86 028 8541-8786. E-mail: jwchen@scu.edu.cn

^a College of Materials Science and Engineering, Sichuan University, 610065 Chengdu,

P.R. China

^b Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, 610065 Chengdu, P.R. China

Figure S1. Total XPS spectrogram of the composition and chemical of HACC and quaternary ferric chitosan (Fe-(NH₂)₄-C, Fe-(NH₂)₃/OH-C, Fe-(NH₂)₂/(OH)₂-C vs. Fe-NH₂/(OH)₃-C)

complexes.

Figure S2. Fe 2p XPS spectra of the composition and chemical of quaternary ferric chitosan (Fe-(NH₂)₄-C, Fe-(NH₂)₃/OH-C, Fe-(NH₂)₂/(OH)₂-C vs. Fe-NH₂/(OH)₃-C) complexes.

Figure S3. CV curves for Fe-(NH₂)₄-C, Fe-(NH₂)₃/OH-C, Fe-(NH₂)₂/(OH)₂-C Fe-NH₂/(OH)₃-C complexes at different rates (0.02, 0.04,0.06, 0.08, 0. 10, 0.12 and 0.14 V/s).

Sample	$\nu_{N\text{-}H} + \nu_{O\text{-}H}$	$\delta_{\text{N-H}}$	$\nu_{C\text{-}OH}$	ν_{C-OH}
HACC	3431.13	1550.66	1076.21	1026.06
А	3321.58	1480.73	1072.35	1023.56
В	3315.61	1485.21	1026.78	989.73
С	3305.79	1490.82	959.56	915.13
D	3248.01	1496.25	933.71	909.22

Table S1 Main infrared spectrum HACCta of HACC and quaternary ammonium chitosan iron(Fe-(NH2)4-C, Fe-(NH2)3/OH-C, Fe-(NH2)2/ (OH) 2-C and Fe-NH2/ (OH) 3-C) complex (cm⁻¹).

Sample	Overpotential (mV) at 10 mA	Tafel slope	References
	cm-2	(mV dec-1)	
Fe-NH ₂ /(OH) ₃ -C	255	67.3	This work
CN-FeO _x -OH	322	124.3	[1]
RuO ₂	283	104.7	[2]
Co-Fe-N-C	~310	40	[3]
Fe/SNCFs-NH ₃	~520	_	[4]
Fe-N-C/FeP _x /NPSC	370	103	[5]
Fe-SAs/Fe ₃ C-Fe@NC	330	56	[6]
CoFe-LDHs	310	59	[7]
$A-Ir_1/Co_{0.8}Fe_{0.2}Se_2$	230	_	[8]
Co _{0.8} Fe _{0.2} Se ₂ @Ni foam	370	_	[9]
Ni _{1/2} Fe _{1/2} (OH) ₂ /CNT-24	244	41	[10]

Table S2. The overpotential at 10 mA cm⁻² of Fe-NH2/(OH)3-C and other reported Fe-basedcatalysts for OER in 1 M KOH solution.

Table S3. Current density attenuation of samples Fe-(NH_2)₄-C, Fe-(NH_2)₃/OH-C, Fe-

Sample	Current density attenuation (vs 10 mA cm ⁻²)			
Fe-(NH ₂) ₄ -C	39.6%			
Fe-(NH ₂) ₃ /OH-C	20.8%			
Fe-(NH ₂) ₂ /(OH) ₂ -C	12.7%			
Fe-NH ₂ /(OH) ₃ -C	1.3%			

 $(\rm NH_2)_2/(\rm OH)_2\text{-}C$ and Fe-NH_2/(OH)_3-C after 12 h stability test.

Reference

1. Jing, T.; Zhang, N.; Zhang, C.; Mourdikoudis, S.; Sofer, Z.; Li, W.; Li, P.; Li, T.; Zuo, Y.; Rao, D., Improving C–N–FeOx Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. *ACS Catalysis* **2022**, *12* (12), 7443-7452.

2. Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; Liu, W.; Sun, X., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. *Nat Commun* **2019**, *10* (1), 1711.

3. Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X., Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. *Nature Energy* **2021**, *6* (11), 1054-1066.

4. Yang, L.; Zhang, X.; Yu, L.; Hou, J.; Zhou, Z.; Lv, R., Atomic Fe-N4 /C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn-Air Batteries with Stable Cycling over 1000 h. *Adv Mater* **2022**, *34* (5), e2105410.

5. Li, P.; Wang, H.; Fan, W.; Huang, M.; Shi, J.; Shi, Z.; Liu, S., Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices. *Chemical Engineering Journal* **2021**, *421*.

6. Sun, X.; Wei, P.; Gu, S.; Zhang, J.; Jiang, Z.; Wan, J.; Chen, Z.; Huang, L.; Xu, Y.; Fang, C.; Li, Q.; Han, J.; Huang, Y., Atomic-Level Fe-N-C Coupled with Fe3 C-Fe Nanocomposites in Carbon Matrixes as High-Efficiency Bifunctional Oxygen Catalysts. *Small* **2020**, *16* (6), e1906057.

7. Lv, J.; Liu, P.; Li, R.; Wang, L.; Zhang, K.; Zhou, P.; Huang, X.; Wang, G., Constructing accelerated charge transfer channels along V-Co-Fe via introduction of V into CoFe-layered double hydroxides for overall water splitting. *Applied Catalysis B: Environmental* **2021**, *298*.

8. Pandit, M. A.; Hemanth Kumar, D. S.; Ramadoss, M.; Chen, Y.; Muralidharan, K., Template free-synthesis of cobalt-iron chalcogenides [Co0.8Fe0.2L2, L = S, Se] and their robust bifunctional electrocatalysis for the water splitting reaction and Cr(vi) reduction. *RSC Adv* **2022**, *12* (13), 7762-7772.

9. Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.; Zeng, J., Electrochemical deposition as a universal route for fabricating single-atom catalysts. *Nat Commun* **2020**, *11* (1), 1215.

10. Ge, J.; Zheng, J. Y.; Zhang, J.; Jiang, S.; Zhang, L.; Wan, H.; Wang, L.; Ma, W.; Zhou, Z.; Ma, R., Controllable atomic defect engineering in layered NixFe1-x(OH)2 nanosheets for electrochemical overall water splitting. *Journal of Materials Chemistry A* **2021**, *9* (25), 14432-14443.