Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Copper(II) complexes derived from naphthalene-based halogenated Schiff bases: Synthesis, structural analysis, DFT computational studies and *in vitro* biological activities

Segun D. Oladipo,^{a,b*} Robert C. Luckay,^{a*}

^aDepartment of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland

7602, South Africa

^bDepartment of Chemical Sciences, Olabisi Onabanjo University, P.M.B 2002, Ago-Iwoye, Nigeria.

***Corresponding authors**: Dr S. D. Oladipo (<u>segun.oladipo@oouagoiwoye.edu.ng</u>) and Prof. R.C. Luckay (rcluckay@sun.ac.za)

Supplementary information

Table of contents

Figures	Page
Figure S1: FT-IR spectrum for L1	2
Figure S2: FT-IR spectrum for L2	3
Figure S3: FT-IR spectrum for 1	4
Figure S4: FT-IR spectrum for 2	5
Figure S5: ¹ H-NMR spectrum for L1	6
Figure S6: ¹³ C-NMR spectrum for L1	7
Figure S7: ¹ H-NMR spectrum for L2	8
Figure S8: ¹³ C-NMR spectrum for L2	9
Figure S9: EPR spectrum for 2	9
Figure S10: EPR spectrum for 1	10
Figure S11: Mass spectrum for L1	10
Figure S12: Mass spectrum for L2	11
Figure S13: Mass spectrum for 1	11
Figure S14: Mass spectrum for 2	12
Figure S15: Optimized structures for L1, L2, 1 and 2	12
Figure S16: Electronic absorption spectra of 1 and 2 at high concentration	13

Figure S1: IR Spectrum of L1

Figure S2: IR Spectrum of L2

Figure S3: IR Spectrum of 1

Figure S4: IR Spectrum of 2

Figure S5: ¹H-NMR Spectrum of L1

Figure S6: ¹³C-NMR Spectrum of L1

Figure S7: ¹H-NMR Spectrum of L2

Figure S8: ¹³C-NMR Spectrum of L2

Figure S9: EPR of 2

Figure S10: EPR of 1

K Element	al Composition	n												– 🗆 X
Eile Edit View Process Help														
	16 9	M	\times											
Single M Tolerance = Element pr Number of Monoisotop 2462 formu Elements U	ass Analysi = 5.0 mDa / rediction: Off isotope peaks ic Mass, Even Ia(e) evaluate Jsed:	S DBE: s used f Electror d with 29	min = - or i-FIT l lons results	1.5, ma = 3 within	ax = 50.0 limits (up to 50 closest result	s for each r	nass)							▲ ↓
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	н	N	0	CI	^
316.0290	316.0289	0.1	0.3	2.5	C9 H16 N3 O3 S CI2	708.3	14.909	0.00	9	16	3	3	2	
	316.0288	0.2	0.6	10.5	C16 H14 N S3	712.6	19.145	0.00	16	14	1		3	
	316.0287	-0.3	0.9	16.5	C8 H10 N7 O3 S2	718.1	23.498	0.00	8	10	5	3 4	2	
	316.0296	-0.6	-1.9	11.5	C17 H12 N O CI2	693.4	0.000	100.00	17	12	1	1	2	
	316.0281	0.9	2.8	-1.5	C4 H17 N7 O S CI3	716.2	22.754	0.00	4	17	7	1 1	3	
	316.0280	1.0	3.2	11.5	C15 H10 N O5 S	718.3	24.900	0.00	15	10	1	5		~
100-	03_8AU I OAFA	4MM 51 (0.379) (.m (35:	53)	316.02	90 918.0263							1: IOF MS ES4 8.18e+006
227. 0- 230 For Help, pre-	0742 246.05 240 ss F1	250 264	260	274. 270	1259 280.0521 305 17043 280 290 300	15.9806 310 3	330.188 33 20 330	5 1.1916 347.215 340 35	91 359	.2406	37	377.23 0 3	810 ^{383.1}	2551 4012659 413.2679 429.3181 443.3354 457.3482

Figure S11: Mass spectrum for L1

Figure S12: Mass spectrum for L2

Figure S13: Mass spectrum for complex 1

Figure S14: Mass spectrum for complex 2

Figure S15: Optimized structures for L1, L2, 1 and 2

Figure S16(a): Electronic absorption spectra of 1 and 2 at high concentrations

Figure S16(b): Electronic absorption spectra of 1 and 2 at high concentrations showing the weak $d\rightarrow d$ transition.