Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Information

Integrating three types of structure reinforcements abounding in

heat-resistant explosives to construct a 3D solvent-free EMOF

with superb stability

Tianjiao Hou^a, Huiting Leng^a, Mengjia Chen^a, Jun Luo^b, Chong Zhang^b,

Yu Zhang ^b, Zhenxin Yi ^b, Shunlin Zhang ^c, and Xuan Shen ^{*a, d}

^a State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China.

^b School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.

^c School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, P. R. China.

^d Zhangjiagang Institute of Nanjing Tech University, Suzhou 215600, P. R. China.

*Corresponding Author E-mail: shenxuan@njtech.edu.cn

Contents

1. Synthesis of H ₂ DAAT	S3
2. Crystal structure determination	S4
3. SEM	S7
4. TG-DSC of H ₂ DAAT	S7
5. Spectra of TG-DSC-MS-IR	S8
6. Sensitivity	S8
7. Oxygen bomb calorimetry	S9
8. Detonation property	S9
9. NMR spectra	S12
10. References	S15

1. Synthesis of H₂DAAT

A. Synthesis of 1*H*-1,2,4-triazole-3,5-diamine (I)

Dicyandiamide (20.01 g, 0.24 mol) was dissolved in 60 mL water. Then, hydrazine dihydrochloride (27.62 g, 0.26 mol) was added to the solution slowly. The mixture was heated at 50°C for 2 h. Subsequently, the pH of the mixture was adjusted to 10.5 with NaOH solution (3.0 mol·L⁻¹)^[1]. The solvent was removed by vacuum evaporation to obtain a solid white powder I (21.22 g, 0.21 mol, 90.3%). ¹H NMR ([D₆] DMSO, 25°C): $\delta = 10.64$ (s, 1H), 5.01 (s, 4H).

B. Synthesis of 1-acetyl-3,5-diamino-1*H*-1,2,4-triazole (II)

According to the literature^[2], acetic anhydride (40.8 mL, 1.2 equiv.) was added dropwise under vigorous stirring to a solution of **I** (36.02 g, 0.36 mol) in 130 mL water at room temperature. After stirring for 1 h, the precipitate was filtered off, washed with water, and dried at room temperature to yield **II** as a colorless powder (38.83 g, 0.27 mol, 76.5%). ¹H NMR([D₆] DMSO): δ = 7.35 (s, 2 H), 5.66 (s, 2 H), 2.33 (s, 3 H). ¹³C NMR ([D₆] DMSO): δ = 169.95, 161.60, 156.47, 23.03.

C. Synthesis of 3-acetylamino-5-amino-1H-1,2,4-triazole (III)

A mixture of **II** (10.00 g, 70.89 mmol) and decaline (100.0 mL) was heated to reflux with stirring at 187-190°C for 6 h. The solid was filtered off, washed with petroleum ether (100.0 mL) and diethyl ether (100.0 mL). White powder **III** (9.05 g, 64.15 mmol, 90.5%) was obtained by drying in the air. ¹H NMR (D₂O, NaOH, 25°C): δ = 2.05 (s, 3H). ¹³C NMR (D₂O, NaOH): δ = 173.90, 161.89, 153.96, 22.49.

D. Synthesis of 5,5'-diamino-3,3'-azo-1*H*-1,2,4-triazole (H₂DAAT)

Potassium permanganate (1.54 g, 9.72 mmol) was added over a period of 10 minutes to the solution of **III** (2.00 g, 14.18 mmol) in sodium hydroxide (32%, 15.0 mL) at 0°C. After the addition, the mixture was allowed to reflux for 3 h. The generated

manganese oxide was removed by filtration, and the filtrate was acidified with concentrated hydrochloric acid to pH = 6. The precipitate was filtered and washed with water, and H₂DAAT was obtained as an orange solid (0.47 g, 2.42 mmol, 49.8%). ¹³C NMR (D₂O, NaOH): δ = 169.80, 164.89.

2. Crystal structure determination

Fig. S1 View of the crystal packing for H₂DAAT showing hydrogen bonds, and $\pi \cdots \pi$ interactions.

Fig. S2 (a) The asymmetric unit for 1; (b) Distorted octahedral configuration of Cd1.

Compounds	H ₂ DAAT	1
CCDC number	2244766	2243170
Empirical formula	$C_4H_6N_{10}$	$C_4H_4CdN_{10}$
Formula weight	194.19	304.58
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/n$	Pbcn
<i>a</i> (Å)	3.5601(6)	7.9084(14)
<i>b</i> (Å)	12.1278(16)	10.8324(19)
<i>c</i> (Å)	8.6009(13)	9.4962(17)
α (°)	90	90
β (°)	96.628(6)	90
γ (°)	90	90

Table S1 Crystallographic data for H₂DAAT and EMOF 1

$V(Å^3)$	368.87(10)	813.5(2)
Ζ	2	4
$D_{\rm c} \left({\rm g} \cdot {\rm cm}^{-3} \right)$	1.748	2.487
μ (mm ⁻¹)	0.133	2.667
F (000)	200	581
Crystal size (mm ³)	$0.15 \times 0.13 \times 0.12$	$0.15 \times 0.14 \times 0.12$
θ Range (°)	2.92-27.44	3.19-25.00
Reflections collected	4164	5668
Independent reflections	850 [$R_{\rm int} = 0.0899$]	715 [$R_{int} = 0.0478$]
Reflections observed $[I>$	571	672
$2\sigma(I)$]		
Data/restraints/parameters	850/0/70	715/0/76
Goodness-of-fit on F^2	1.1295	1.1072
$R_1/wR_2 [I > 2\sigma(I)]$	0.0481/0.1029	0.0163/0.0390
R_1/wR_2 (all data)	0.0809/0.1373	0.0171/0.0411
Max., Min. $\Delta \rho$ (e [·] Å ⁻³)	0.3918, -0.4519	0.3315, -0.2994

Table S2 Selected bond lengths (Å) and angles (°) for H_2DAAT

H ₂ DAAT				
C1-N2	1.327(3)	C2-N1	1.337(3)	
C1-N3	1.359(3)	C2-N5	1.351(3)	
C1-N4	1.392(4)	N1-N2	1.371(3)	
C2-N3	1.334(3)	N4-N4 ⁱ	1.274(4)	
N2-C1-N3	115.6(2)	N1-C2-N5	124.7(2)	
N2-C1-N4	117.4(2)	C2-N1-N2	110.3(2)	
N3-C1-N4	127.1(2)	C1-N2-N1	101.5(2)	
N3-C2-N1	110.2(2)	C2-N3-C1	102.4(2)	
N3-C2-N5	125.0(2)	N4 ⁱ -N4-C1	112.7(2)	

Symmetry code: i) 1-*x*, 1-*y*, 1-*z*.

Table S3 Hydrogen-bonding geometry	and $\pi \cdots \pi$ interactions (A)	A, °) for H ₂ DAAT
------------------------------------	---------------------------------------	-------------------------------

D-H…A	d(D-H)	d(H···A)	$d(D \cdots A)$	∠D-H…A
N1-H1···N3 ⁱⁱ	0.879	1.958	2.779(3)	155
N5-H5A…N2 ⁱⁱⁱ	0.888	2.404	3.168(3)	144
N5-H5B…N5 ^{iv}	0.856	2.687	3.326(3)	133
π (C1,C2,N1~N4)··· π (C1,C2,N1~N4) ^v		3.22	2(3)	0

Symmetry codes: ii) 1/2+*x*, 3/2-*y*, *z*-1/2; iii) 3/2-*x*, 1/2+*y*, 1/2-*z*; iv) 1- *x*, 2-*y*, 1-*z*; v) 1+*x*, *y*, *z*.

EMOF 1				
Cd1-N1	2.262(2)	Cd1-N4 ^{iv}	2.494(3)	
Cd1-N3 ⁱⁱ	2.358(2)	N4-N4 ^{vi}	1.292(4)	
N1-N2	1.373(2)	C1-N4	1.379(3)	
N1 ⁱ -Cd1-N1	93.43(9)	N1-Cd1-N4 ^{iv}	101.30(6)	
N1-Cd1-N3 ⁱⁱⁱ	93.06(6)	$N4^{iv}$ -Cd1-N4 ^v	135.37(8)	
N3 ⁱⁱⁱ -Cd1-N4 ^v	78.75(6)	N1-Cd1-N4 ^v	108.95(6)	
$N3^{iii}$ -Cd1-N4 ^{iv}	67.33(8)	N1-Cd1-N3 ⁱⁱ	173.10(6)	
N3 ⁱⁱ -Cd1-N3 ⁱⁱⁱ	80.55(8)	Cd1-N4 ^v -N4 ⁱⁱ	115.4(2)	
N3-C1-N4	125.43(18)	N2-N1-Cd1	123.66(13)	

Table S4 Selected bond lengths (Å) and angles (°) for EMOF 1

Symmetry codes: i) 1-*x*, *y*, 1/2-*z*; ii) 1/2+*x*, 1/2+*y*, 1/2-*z*; iii) 1/2-*x*, 1/2+*y*, *z*; iv) 1/2+*x*, 3/2-*y*, 1-*z*; v) 1/2-*x*, 3/2-*y*, *z*-1/2; vi) -*x*, 1-*y*, 1-*z*.

Table S5 Hydrogen-bonding geometry, N-H··· π , and p··· π interactions (Å, °) for EMOF 1

D-H…A	d(D-H)	d(H···A)	d(D…A)	∠D-H…A
N5-H5A…N2 ^v	0.888	2.182	3.052(2)	166
N5-H5B…π (C1,C2,N1~N4) ^{vii}	0.844	2.598	3.065(2)	138
$p(N5) \cdots \pi (C1, C2, N1 \sim N3)^{i}$			3.111(2)	

Symmetry codes: i) 1-*x*, *y*, 1/2-*z*; v) 1/2-*x*, 3/2-*y*, *z*-1/2; vii) *x*, 1-*y*, *z*-1/2.

Fig. S3 Powdered X-ray diffraction (PXRD) pattern of EMOF 1.

Fig. S4 SEM of EMOF 1.

4. TG-DSC of H₂DAAT

Fig. S5 The TG-DSC curves of H₂DAAT.

5. Spectra of TG-DSC-MS-IR

Fig. S7 Mass spectra.

6. Sensitivity

Impact sensitivity was determined by the Fall Hammer Apparatus. Twenty milligrams of EMOF **1** was compacted to a copper cap under the press of 39.2 MPa and hit by a 2 kg drop hammer, and the calculated value of h_{50} represents the drop height of 50% initiation probability. Friction sensitivity of EMOF **1** was measured by applying a

Julius Peter's machine using a 20 mg sample.

7. Oxygen bomb calorimetry

The constant-volume combustion energy of EMOF **1** and H_2DAAT were investigated by a precise C200 calorimeter (Germany IKA)^[3]. Approximately 200 mg of the samples were pressed with a well-defined amount of benzoic acid to form a tablet to ensure better combustion. The recorded data are the average of six single measurements. The calorimeter was calibrated by the combustion of certified benzoic acid (Standard Reference Material, 39i, NIST) in an oxygen atmosphere at a pressure of 30.5 bar.

The experimental results for the constant volume combustion energy ($\Delta_c U$) of the EMOF 1 and H₂DAAT are -4075.28 kJ·mol⁻¹, and -3972.54 kJ·mol⁻¹, respectively. According to the formula, $\Delta_c^{\ H_m^{\theta}} = \Delta_c^{\ U_m^{\theta}} + \Delta n_g RT$ (n_g is the total molar amount of gases in the products or reactants, R = 8.314 J·mol⁻¹·K⁻¹, T = 298.15 K), the standard molar enthalpies of combustion ($\Delta_c^{\ H_m^{\theta}}$) can be derived as being -4066.58 kJ·mol⁻¹, and -3963.87 kJ·mol⁻¹ for equation S1-S2, respectively. The combustion reaction equations are listed as follows:

$$C_4H_4CdN_{10}(s) + 11/2 O_2(g) \rightarrow CdO(s) + 4 CO_2(g) + 2 H_2O(l) + 5 N_2(g)$$
 (S1)

$$C_4H_6N_{10}(s) + 11/2O_2(g) \rightarrow 4CO_2(g) + 3H_2O(l) + 5N_2(g)$$
 (S2)

Based on the calculated enthalpies of combustion and known enthalpies of formation of the combustion products determined experimentally, $\Delta_{\rm f}^{H_m^{\theta}}({\rm CdO}) = -258.35 \text{ kJ} \cdot {\rm mol}^{-1}$, $\Delta_{\rm f}^{H_m^{\theta}}({\rm CO}_2) = -393.51 \text{ kJ} \cdot {\rm mol}^{-1}$, $\Delta_{\rm f}^{H_m^{\theta}}({\rm H}_2{\rm O}) = -285.83 \text{ kJ} \cdot {\rm mol}^{-1}$ are obtained from literature^[4]. On the basis of Hess's law in thermochemical equation, the standard enthalpies of formation ($\Delta_{\rm f}^{H_m^{\theta}}$) of EMOF **1** and H₂DAAT are calculated as 1662.53 kJ·mol⁻¹, and 1532.34 kJ·mol⁻¹, respectively.

8. Detonation property

As described in ref.5, the new and efficient method, which employed the hypothesis of Becker-Kistiakowsky-Wilson (BKW) equation and arbitrary theory of the K-J method, could be applied to perform the detonation performances of metal

compounds containing special elements. The overall calculation process can be described as follows: for the explosives composed of C, H, N, and O elements, all N atoms are converted to N2; O atoms form H2O with H atoms first and then form CO2 with C atoms; the remaining C atoms are retained in solid state; if there are O atoms left, they will form O₂. To preserve Kamlet's method, the developed theory is employed to determine the detonation products from metal-containing explosives. In most cases, metal atoms are converted to their oxidation states, emitting more heat after detonation. Otherwise, metal atoms can be treated as their reduction states, if the heat of formation (HOF) of metallic oxides is higher than that of H₂O, or there is no O atom in the molecule. Besides, O atoms form H₂O with H atoms first and the remaining ones then form CO₂ with C atoms. However, if the amount of O atoms is not sufficient to oxidize all H atoms, the remaining H atoms can produce NH3 with N atoms, and the rest of the N atoms are released as N₂ gas. On the other hand, the remaining C atoms are retained in the solid state if they are not completely oxidized by O atoms. If there are redundant O atoms, however, they can be expelled as O_2 . The detonation reactions of EMOF 1 and H₂DAAT estimated by the new method for compounds are described by the equation S3-S4. Detonation velocity (D) and detonation pressure (P) are of two compounds are investigated by Kamlet-Jacbos (K-J) equations, following as Equations (S5-S8)

$$C_4H_6N_{10}(s) \rightarrow 4C(s) + 4N_2(g) + 2NH_3(g)$$
 (S4)

$$\mathbf{D} = 1.01\varphi^{1/2}(1+1.30\rho) \tag{S5}$$

$$\mathbf{P} = 1.558\varphi\rho^2 \tag{S6}$$

$$\Phi = 31.68N(MQ)^{1/2}$$
(S7)

$$Q = \frac{-[\Delta H f(\text{detonation products}) - \Delta H f(\text{energetic compound})]}{\text{formula weight of energetic compound}}$$

where D is detonation velocity (km·s⁻¹), P is detonation pressure (GPa), Q is heat of detonation (kcal·g⁻¹), N is moles of detonation gases per gram of explosive, M is average molecular weight of the gases, ρ is density of explosive (g·cm⁻³).

The N and M of detonation reaction are given by equations (S7-S8)

$$\frac{\sum ng}{n = \text{formula weight of explosive}}$$
(S9)
$$\frac{\sum (ng \times Mg)}{\sum ng}$$
(S10)
where *n* is the moles of each detonation gas per mole of explosive *M* is the molecular

where n_g is the moles of each detonation gas per mole of explosive, M_g is the molecular weight of each detonation gas per mole of explosive. Utilizing the above equations, and the above experimentally determined $\Delta_f H_m^{\theta}$ values of **1** and the known NH₃ (g, -45.94 kJ·mol⁻¹), the detonation velocity and detonation pressure for compounds can be obtained.

For EMOF **1**

$$\rho = 2.487 \text{ g} \cdot \text{cm}^{-3}$$

 $Q = \Delta H_{det} = -[4/3 \times (-45.94) - 1662.53]/304.58 = 5.66 \text{ kJ} \cdot \text{g}^{-1} = 1.36 \text{ kcal} \cdot \text{g}^{-1}$
 $N = (13+4)/(3 \times 304.58) = 0.0186 \text{ mol} \cdot \text{g}^{-1}$
 $M = (17.03 \times 4 + 28.01 \times 13)/17 = 25.43 \text{ g} \cdot \text{mol}^{-1}$
 $\Phi = 31.68 \times 0.0186 \times (25.43 \times 1.36)^{1/2} = 3.47$
 $P = 1.558 \times (2.487)^2 \times 3.47 = 33.44 \text{ GPa}$
 $D = 1.01 \times (3.47)^{1/2} \times (1+1.30 \times 2.487) = 7.964 \text{ km} \cdot \text{s}^{-1}$

For H₂DAAT $\rho = 1.748 \text{ g} \cdot \text{cm}^{-3}$ $Q = \Delta H_{det} = -[2 \times (-45.94) - 1532.34]/194.19 = 8.36 \text{ kJ} \cdot \text{g}^{-1} = 1.998 \text{ kcal} \cdot \text{g}^{-1}$ $N = (4+2)/194.19 = 0.0309 \text{ mol} \cdot \text{g}^{-1}$ $M = (28 \times 4+17 \times 2)/6 = 24.33 \text{ g} \cdot \text{mol}^{-1}$ $\Phi = 31.68 \times 0.0309 \times (24.33 \times 1.998)^{1/2} = 6.83$ $P = 1.558 \times (1.748)^2 \times 6.83 = 32.51 \text{ GPa}$ $D = 1.01 \times (6.83)^{1/2} \times (1+1.30 \times 1.748) = 8.638 \text{ km} \cdot \text{s}^{-1}$

9. NMR spectra

Fig. S9 ¹H NMR ([D₆] DMSO, 400 MHz) of II

10. References

- M. S. Pevzner, N. V. Gladkova, T. A. Kravchenko, 5-Amino-3-nitro-1,2,4-triazole and 5-nitramino-3-nitro-1,2,4-triazole, *Zh. Org. Khim.*, 1996, **32**, 1230-1233.
- [2] A. Dippold, T. M. Klapötke, F. A. Martin, Synthesis and characterization of bis(triaminoguanidinium) 5,5'-dinitrimino-3,3'-azo-1*H*-1,2,4-triazolate-A novel insensitive energetic material, *Z. Anorg. Allg. Chem.*, 2011, **637**, 1181-1193.
- [3] X. Yang, S. Chen, S. Gao, H. Li, Q. Shi, Construction of a rotating-bomb combustion calorimeter and measurement of thermal effects, *Instrum. Sci. Technol.*, 2002, 30, 311-321.
- [4] Y. Wang, J. Zhang, H. Su, S. Li, S. Zhang, S. Pang, A simple method for the prediction of the detonation performances of metal-containing explosives, *J. Phys. Chem. A*, 2014, **118**, 4575-4581.
- [5] M. J. Kamlet, S. J. Jacobs, Chemistry of Detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives, *J. Chem. Phys.*, 1968, 48, 23-35.