Elucidating, understanding and correlating the photo-electrochemical properties of HKUST-1 through a computational and experimental approach.

Table S1. Crystallite size determined for HKUST-1 synthesized in different works					
Material	Material Crystallite size (nm)				
HKUST-1 _{slow evaporation}	123	This work			
HKUST-1 _{5min}	59	1			
HKUST-1 _{10min}	51				
HKUST-1 _{15min}	57				
HKUST-1 _{20min}	60				
Co-ferrite@HKUST-1	24	2			
HKUST-1 _{MW}	22.4				
Ag ₃ PO ₄ /HKUST-1	20	3			
Ag/Ag ₃ PO ₄ /HKUST-1	24.40				
HKUST-1-0NH ₂	36.7	4			
HKUST-1-25NH ₂	27.1				
HKUST-1-50NH ₂	32.5				
HKUST-1-75NH ₂	31.8				
HKUST-1-100NH ₂	20.7				
HKUST-1-N1	58.3	5			
HKUST-1-N2	51.9				
HKUST-1-N3	41.7]			
HKUST-1-N4	49.3				
HKUST-1-N5	51.8				
HKUST-1-N6	70				
HKUST-1-T1	80.9				
HKUST-1-T1.5	60				
HKUST-1-T2	78.6	_			
HKUST-1-T3	68.5	_			
HKUST-1-C0	47.5	_			
HKUST-1-C1	42.4	_			
HKUST-1-C1.5	42.1				
HKUST-1-C3	57.4				
HKUST-1-C4	57				
HKUST-1 _{industrial production}	87	6			
HKUST-1 _(C/route 20 h)	~ 40	7			
HKUST-1 _(H/route 10 h)	~ 85	_			
HKUST-1 _(H/route 20 h)	~ 83	4			
HKUST-1 _(H/route 48 h)	~ 44				
HKUST-1 _(H1)	52.9	8			
H1/G_A	45.1				

H1/G_B	49.5	
H1/G(Cu)_A	50.3	
H1/G(Cu)_B	43.3	
MOF-199(HKUST-1)	30.41	9
MOF-199/ BaTi _{0.85} Zr _{0.15} O ₃ (10%)	38.63	
MOF-199/ BaTi _{0.85} Zr _{0.15} O ₃ (20%)	41.76	
MOF-199/ BaTi _{0.85} Zr _{0.1} O ₃ (30%)	40.07	
HKUST-1	56.88	
BF-PS	34.29	
BF-OP _o	40.25	
BF-OP _M	49.34	
CV-PS	40.47	
CV-OP _o	44.38	
CV-OP _M	44.41	10
EBT-PS	37.35	
EBT-OP _o	40.57	
EBT-OP _M	44.41	

Table S2. Bandgap determined for HKUST-1 synthesized in different works					
Material	Bandgap (eV)	Type of transition	Ref		
HKUST-1 slow evaporation	3.30	Indirect			
HKUST-1 _{5min}	3.55		1		
HKUST-1 _{10min}	3.42	Direct			
HKUST-1 _{15min}	3.47				
HKUST-1 _{20min}	3.45				
HKUST-1 _{solvothermal}	3.5	Direct	11		
HKUST-1 _{solvothermal (1)}	3.31	Direct	12		
HKUST-1 _{solvothermal (2)}	2.81		13		
HKUST-1 _{DMF/EtOH}	3		14		
HKUST-1 _{DMF/EtOH (Ce/Eu)}	2.60				
HKUST-1 _{ultrasoun-solvothermal}	2.63	Direct	15		
HKUST-1 _{MW}	3.15	Direct	3		
HKUST-1 _{computational}	2		16		
HKUST-1 _{solvothermal (3)}	3.4	Direct	17		
HKUST-1 _{solvothermal} (H2O/EtOH)	3.32	Direct	18		

Table S3. Mulliken charges and spin density calculated for HKUST-1. Here, minimum (min),								
averaged (aver), and maximum (max) charge values are reported.								
Compound	Elements	S	р	d	f	Total	Charge (<i>e</i>)	Spin
_					-	population		density
		6.403	12.339	9.305	0.00	28.047	+0.953	
	Cu	6.403	12.337	9.305	0.00	28.045	(min)	±0.5
		6.403	12.337	9.302	0.00	28.042	+0.955(aver)	
							+0.958	
							(max)	
		3.906	4.679	0.026	0.00	8.611		
HKUST-1	Ο	3.907	4.679	0.026	0.00	8.612		±0.1
		3.907	4.679	0.027	0.00	8.613	-0.611 (min)	
							-0.612(aver)	
							-0.613	
							(max)	
		3.181	2.873	0.035	0.00	6.089		0.0
	C	3.157	2.790	0.032	0.00	5.979		
		2.975	2.199	0.116	0.00	5.290		
							-0.089 (min)	
							0.021 (aver)	
							0.710 (max)	

Figure S1. HOMO-LUMO energy of H_2O ¹⁹, VB and CB energy of HKUST-1, and HOMO-LUMO energy of TCNQ ^{20, 21}.

References

- 1. E. M. C. Morales, M. A. Méndez-Rojas, L. M. Torres-Martínez, L. F. Garay-Rodríguez, I. López, I. E. Uflyand and B. I. Kharisov, *Polyhedron*, 2021, **210**, 115517.
- 2. T. Saemian, M. Gharagozlou, M. Hossaini Sadr and S. Naghibi, *J. Inorg. Organomet. Polym. Mater.*, 2020, **30**, 2347-2355.
- 3. F. A. Sofi, K. Majid and O. Mehraj, *J. Alloys Compd.*, 2018, **737**, 798-808.
- 4. C. Y. Chuah, W. Li, S. A. S. C. Samarasinghe, G. S. M. D. P. Sethunga and T.-H. Bae, *Microporous Mesoporous Mater.*, 2019, **290**, 109680.
- 5. C. Xin, H. Zhan, X. Huang, H. Li, N. Zhao, F. Xiao, W. Wei and Y. Sun, *RSC Adv.*, 2015, **5**, 27901-27911.
- 6. J. Huo, M. Brightwell, S. El Hankari, A. Garai and D. Bradshaw, *J. Mater. Chem.*, 2013, **1**, 15220-15223.
- 7. S. Gautam, J. Singhal, H. K. Lee and K. H. Chae, *Mater. Today Chem.*, 2022, **23**, 100647.
- 8. P. Jagódka, K. Matus and A. Łamacz, *Molecules*, 2022, **27**, 7082.
- 9. R. Sheikhsamany, H. Faghihian and R. Fazaeli, *Inorg. Chem. Commun.*, 2021, **134**, 109048.
- 10. S. Loera-Serna, E. Ortiz and H. I. Beltrán, *New J Chem*, 2017, **41**, 3097-3105.
- 11. S. Jalali, M. R. Rahimi, K. Dashtian, M. Ghaedi and S. Mosleh, *Polyhedron*, 2019, **166**, 217-225.
- 12. J. Zhang, C. Su, X. Xie, P. Liu and M. E. Huq, *RSC Adv.*, 2020, **10**, 37028-37034.
- 13. D. Zheng, M. Chen, J. Peng, J. Chen, T. Chen, Y. Chen, L. Huang and W. Gao, *Microchim. Acta.*, 2021, **188**, 328.
- 14. S. Mosleh, K. Rezaei, K. Dashtian and Z. Salehi, J. Hazard. Mater., 2021, 409, 124478.
- 15. S. Mosleh, M. R. Rahimi, M. Ghaedi and K. Dashtian, *Ultrason. Sonochem.*, 2016, **32**, 387-397.
- 16. Z.-G. Gu, L. Heinke, C. Wöll, T. Neumann, W. Wenzel, Q. Li, K. Fink, O. D. Gordan and D. R. T. Zahn, *Applied Physics Letters*, 2015, **107**, 183301.
- 17. M. Karimi, S. Sadeghi, H. Mohebali, Z. Azarkhosh, V. Safarifard, A. R. Mahjoub and A. Heydari, *New J Chem*, 2021.
- 18. O. Mehraj, F. A. Sofi, S. K. Moosvi, W. Naqash and K. Majid, *J. Mater. Sci.: Mater. Electron.*, 2018, **29**, 3358-3369.
- 19. S. ten Brinck, C. Nieuwland, A. van der Werf, R. M. P. Veenboer, H. Linnartz, F. M. Bickelhaupt and C. Fonseca Guerra, *ACS Earth Space Chem.*, 2022, **6**, 766-774.
- 20. M. E. Sánchez Vergara, L. Ramírez Vargas, C. Rios, B. Molina and R. Salcedo, *Electronics*, 2021, **10**, 117.
- 21. J. E. Rainbolt, A. B. Padmaperuma, N. Govind and D. J. Gaspar, *Mol. Simul.*, 2013, **39**, 350-356.