Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Facile construction of flower-like MoO_2/MoS_2 heterostructures encapsulated

in nitrogen-doped carbon for high-performance sodium-ion storage

Chao Li^{a,b,*}, Kangzhe Cao^{a,b}, Sitong Lu^a, Qing Li^{a,b}, Yu Zhang^{a,b,*}

^aCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China

^bXinyang Key Laboratory of Low-Carbon Energy Materials, Xinyang Normal University, Xinyang 464000, China

*Corresponding authors: lichao98.3.6@163.com (Chao Li); zhangyu@xynu. edu.cn

(Yu Zhang)

Fig. S1 Low- and high-resolution SEM images for (a-b) MoO₂/MoS₂, (d-e) MoO₂@NC, and (g-h) MoS₂, respectively; EDS spectra for (c) MoO₂/MoS₂, (f) MoO₂@NC, and (i) MoS₂, respectively.

Fig. S2 EDS spectrum for the MoO₂/MoS₂@NC.

Fig. S3 (a) TEM and (b) HRTEM images for the MoS_2 ; (c-e) Elemental color mapping for MoS_2 .

Fig. S4 N_2 adsorption-desorption isotherms for MoS_2 .

Fig. S5 Pore size distribution for the MoS_2 .

Anodes .	Current density (A g ⁻¹) and Specific capacity (mAh g ⁻¹)					
	0.1 A g ⁻¹	0.5	2.0	5.0	10.0	0.1
MoO ₂ /MoS ₂ @NC	593.1 mAh g ⁻¹	524.2	456.1	395.8	337.5	630.6
MoO_2/MoS_2	487.3 mAh g ⁻¹	420.9	372.9	312.5	258.4	468.6
MoO ₂ @NC	346.9 mAh g ⁻¹	296.5	266.1	228.7	199.4	311.7
MoS_2	388.7 mAh g ⁻¹	352.4	308.2	258.1	203.7	392.4

Table S1 Rate performance comparisons for the $MoO_2/MoS_2@NC$, MoO_2/MoS_2 , $MoO_2@NC$, and MoS_2 anodes.

Anodes	$\mathrm{R_{e}}\left(\Omega ight)$	$R_{ct}(\Omega)$
MoO ₂ /MoS ₂ @NC	4.3	330
MoO_2/MoS_2	5.2	362
MoO ₂ @NC	4.6	343
MoS_2	9.9	378

Table S2EIS spectra fitting results for the $MoO_2/MoS_2@NC$, MoO_2/MoS_2 , $MoO_2@NC$, and MoS_2 anodes in Na half-cells.