Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

A Multifunctional Nanoporous Carbon Platform Derived from Zeolitic Imidazolate Framework for Sensing and Enzyme-like

Catalyst

Lin Lu,^{*a} Xiaojing Li, ^b Junsong Mou, ^c Xiyue Cao, ^c and Jianfei Xia ^{*c}

^{a.} Zibo Normal College, Zibo, Shandong, PR China.

^{b.} Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, PR China

^{c.} College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, PR China.

* Corresponding author. E-mail: xiajianfei@126.com Fax: +86-532-85953280; Tel: 86-532-85953280

Contents

Chemicals and Materials3
Apparatus and Characterization3
Fig. S1. TEM image of E-Z-800 with large magnification4
Fig. S2. XPS spectrum of E-Z-8004
Fig. S3. Raman spectra of Z-800 and E-Z-8005
Fig. S4. FT-IR spectrum of E-Z-8005
Fig. S5. (A) SWV curves of 0.1 mM HQ on E-Z-800/GCE at different pH; pH is from
6.4 to 7.6. (B) Corresponding peak currents versus pH. (C) Corresponding peak
potentials versus pH6
Fig. S6. (A) SWV curves of 0.1 mM CT on E-Z-800/GCE at different pH; pH is from
6.4 to 7.6. (B) Corresponding peak currents versus pH. (C) Corresponding peak
potentials versus pH6
Fig. S7. CVs of 0.1 mM HQ on E-Z-800/GCE with different scan rates in 0.1 M PBS
(pH 7.0) solution; Scan rates (from inner to outer) were from 10 to 500 mV \cdot s ⁻¹ 7
Fig. S8. The plots of redox peak currents (Ip) versus the square root of scan rate7
Fig. S9. CVs of 0.1 mM CT on E-Z-800/GCE with different scan rates in 0.1 M PBS
(pH 7.0) solution; Scan rates (from inner to outer) were from 10 to 500 mV·s ⁻¹ 8
Fig. S10. The plots of redox peak currents (Ip) versus the square root of scan rate8
Fig. S11. (A) Time-dependent absorbance changes of TMB oxidation catalyzed by
variable concentrations of H_2O_2 in the presence of E-Z-800. (B) Relation curve of the
reciprocal of H ₂ O ₂ concentration and the reciprocal of reaction rate9
Fig. S12. (A) Time-dependent absorbance changes of TMB oxidation catalyzed by
H_2O_2 in the presence of variable concentrations of E-Z-800. (B) Relation curve of the
concentrations of E-Z-800 and the reaction rate9
Fig. S13. Changes of absorbance signals for glucose, fructose, lactose, NaCl and KCl
respectively10
Fig. S14. Changes of FL intensities for Na ⁺ , K ⁺ , Cd ²⁺ , Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Mg ²⁺ , Ca ²⁺
and Fe ³⁺ respectively10

Chemicals and Materials

Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 99%) and hydroquinone (C₆H₆O₂, \geq 99.0%, AR) were ordered from Aladdin Reagent Co., Ltd (Shanghai, China). 2-Methylimidazole (C₄H₆N₂, 98%) was ordered from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). Catechol (C₆H₆O₂, \geq 98.0%, AR), ethanol (C₂H₅OH, \geq 99.5%), potassium hydroxide (KOH), hydrogen peroxide (H₂O₂, 30%) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). 3, 3', 5, 5'-Tetramethylbenzidine (TMB, C₁₆H₂₀N₂) was ordered from Sangon Biotech (Shanghai) Co., Ltd (Shanghai, China). Nafion solution (5%, DuPont) was diluted into 0.5 wt%. N, N-dimethylformamide, Na₂HPO₄, NaH₂PO₄, and other reagents were of analytical grade. The water used in this work was deionized water.

Apparatus and Characterization

Transmission electron microscopy (TEM) characterization were performed on JEOL JEM-1200. The surface topography was characterized by using field emission scanning electron microscopy (FESEM, Regulus 8100 Hitachi). Atomic force microscopy (AFM) images were collected by Bruker Multimode 8. X-ray diffraction (XRD) data was obtained by Rigaku D-MAX 2500/PC. The Raman spectra were recorded on Thermo Fisher Scientific Raman Microscope (DXR2) at an excitation wavelength of 532 nm at room temperature. Fourier Transform Infrared Spectrometer (FT-IR, Nicolet[™] iS50 FTIR, United States) was used to study the surface groups of the obtained sample. The UV-vis spectra were performed with the UV-vis spectrophotometer (Shimadzu UV-2500, Japan). The fluorescence intensity of GQDs solution was recorded on an F-7000 fluorescence spectrometer (Hitachi, Japan). The electrochemical data were measured by PARSTAT 6000A electrochemical workstation with a traditional three-electrode cell (Princeton Applied Research, United States).

Fig. S1. TEM image of E-Z-800 with large magnification.

Fig. S2. XPS spectrum of E-Z-800.

Fig. S3. Raman spectra of Z-800 and E-Z-800.

Fig. S4. FT-IR spectrum of E-Z-800.

Fig. S5. (A) SWV curves of 0.1 mM HQ on E-Z-800/GCE at different pH; pH is from 6.4 to 7.6. (B) Corresponding peak currents versus pH. (C) Corresponding peak potentials versus pH.

Fig. S6. (A) SWV curves of 0.1 mM CT on E-Z-800/GCE at different pH; pH is from 6.4 to 7.6. (B) Corresponding peak currents versus pH. (C) Corresponding peak potentials versus pH.

Fig. S7. CVs of 0.1 mM HQ on E-Z-800/GCE with different scan rates in 0.1 M PBS (pH 7.0) solution; Scan rates (from inner to outer) were from 10 to 500 mV·s⁻¹.

Fig. S8. The plots of redox peak currents (Ip) versus the square root of scan rate.

Fig. S9. CVs of 0.1 mM CT on E-Z-800/GCE with different scan rates in 0.1 M PBS (pH 7.0) solution; Scan rates (from inner to outer) were from 10 to 500 mV·s⁻¹.

Fig. S10. The plots of redox peak currents (Ip) versus the square root of scan rate.

Fig. S11. (A) Time-dependent absorbance changes of TMB oxidation catalyzed by variable concentrations of H₂O₂ in the presence of E-Z-800. (B) Relation curve of the reciprocal of H₂O₂ concentration and the reciprocal of reaction rate.

Fig. S12. (A) Time-dependent absorbance changes of TMB oxidation catalyzed by H₂O₂ in the presence of variable concentrations of E-Z-800. (B) Relation curve of the concentrations of E-Z-800 and the reaction rate.

Fig. S13. Changes of absorbance signals for glucose, fructose, lactose, NaCl and KCl respectively.

Fig. S14. Changes of FL intensities for Na⁺, K⁺, Cd²⁺, Zn²⁺, Mn²⁺, Co²⁺, Mg²⁺, Ca²⁺ and Fe³⁺ respectively.