Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information (SI)

Exploration of Silver Borates with Diverse Low Dimensional Anion Frameworks by Introducing Monovalent Heteroanions

Lei Huai, Wenlong Liu,* Bei-Bei Zhang, Ru-Ling Tang,* Yi-Lei Lv, Yue-Qi Wei and Sheng-Ping Guo* School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.

Corresponding authors: liuwl@yzu.edu.cn; <u>rltang@yzu.edu.cn</u>; <u>spguo@yzu.edu.cn</u>.

Supporting Information Index

Tables and Figures

- 1) **Table S1.** Crystal Data and Structure Refinement Parameters.
- 2) **Table S2.** Important bond lengths (Å) for (1), (2), (3) and (4).
- 3) **Table S3.** Selected bond angles (deg) for (1), (2), (3) and (4).
- 4) **Table S4.** Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for ((1), (2), (3) and (4). U_{ea} is defined as 1/3 of the trace of the orthogonalized U_{ii} tensor.
- 5) Table S5. Assignment of the absorption peaks observed in the IR spectra of (1), (2), (3) and (4).
- 6) **Table S6.** Reported inorganic stoichiometric Ag-borates with B–O framework.
- 7) Figure S1. Rietveld refiement for the powder X-ray diffraction pattern of (1).
- 8) Figure S2. Rietveld refiement for the powder X-ray diffraction pattern of (2).
- 9) Figure S3. Rietveld refiement for the powder X-ray diffraction pattern of (3).
- 10) Figure S4. Rietveld refiement for the powder X-ray diffraction pattern of (4).
- 11) Figure S5. Asymmetric units of these compounds, and the coordination environments of atoms.
- 12) Figure S7. (a) 2D structure of (2) along the *ab* plane, (b) 12-MR channel, (c) 20-MR channel, and (d) 16-MR channel.
- 13) Figure S7. (a) 2D structure of (3) along the *ab* plane, (b) 12-MR channel, (c) 20-MR channel, and (d) 16-MR channel.
- 14) Figure S8. The calculated refractive indices of (1), (2), (3) and (4).

Compounds	(1)	(2)	(3)	(4)
Empirical formula	Ag ₇ B ₉ O ₁₆ (OH) ₂	$Ag_8B_8O_{15}Cl_2$	Ag ₈ B ₈ O ₁₅ (OH)Br	$Ag_{11}B_8O_{16}I_3$
$Mr \left(g \cdot mol^{-1} \right)$	1142.40	1260.34	1286.36	1909.75
Cryst syst.	Monoclinic	Monoclinic	Triclinic	Monoclinic
<i>T</i> (K)			296	
Space group	C2/c	C2/c	$P \overline{1}$	C2/c
<i>a</i> (Å)	8.826(4)	13.7794(8)	8.7338(3)	13.4121(5)
<i>b</i> (Å)	8.825(3)	10.7272(6)	8.8080(3)	12.5734(4)
<i>c</i> (Å)	20.483(9)	21.5856(12)	10.8986(3)	25.1948(9)
α (°)	90	90	79.573(10)	90
eta (°)	100.220(2)	95.604(2)	89.317(10)	93.062(10)
γ (°)	90	90	75.242(10)	90
$V(Å^3)$	1570.10(11)	3175.40(3)	796.84(4)	4242.70(3)
Ζ	4	8	2	8
$D_c (\mathrm{g}\cdot\mathrm{cm}^{-3})$	4.833	5.273	5.361	5.980
$\mu \ (\mathrm{mm}^{-1})$	8.653	10.071	12.212	14.354
F (000)	2080.0	4560.0	1160.0	6752.0
$R_{\rm int}$	0.0322	0.0718	0.0313	0.0275
Radiation		ΜοΚα (λ	$\lambda = 0.71073)$	
2θ range for data collection/°	5.038 to 55.002	3.792 to 55.062	4.826 to 54.966	3.238 to 55.068
Index ranges	$-11 \le h \le 9,$ $-11 \le k \le 10,$ $-26 \le l \le 26$	$-15 \le h \le 17,$ $-13 \le k \le 13,$ $-28 \le l \le 27$	$-11 \le h \le 11,$ $-11 \le k \le 11,$ $-14 \le l \le 14$	$-17 \le h \le 16,$ $-16 \le k \le 16,$ $-32 \le l \le 32$
Reflns collected	7797	15737	14123	32864
GOF on F^2	1.030	1.041	1.022	1.075
Final <i>R</i> indexes $[I \ge 2\sigma (I)]^a$ Final <i>R</i> indexes	$R_1 = 0.0280,$ w $R_2 = 0.0556$ $R_1 = 0.0384,$	$R_1 = 0.0438,$ w $R_2 = 0.0514$ $R_1 = 0.0886,$	$R_1 = 0.0233,$ $wR_2 = 0.0455$ $R_1 = 0.0307,$	$R_1 = 0.0219,$ w $R_2 = 0.0398$ $R_1 = 0.0272,$
[all data] ^a	$wR_2 = 0.0592$	$wR_2 = 0.0580$	$wR_2 = 0.0480$	$wR_2 = 0.0412$

 Table S1 Crystal Data and Structure Refinement Parameters.

 $aR_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $wR_2 = [w (F_o^2 - F_c^2)^2 / wF_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

Bond Length(Å) for (1)			
B(1)—O(1)	1.353(6)	B(1)—O(2)	1.403(6)
B(1)—O(3)	1.380(6)	B(2)—O(2)	1.501(6)
B(2)—O(4)	1.454(6)	$B(2) - O(5)^{13}$	1.454(6)
$B(2) - O(7)^{13}$	1.495(6)	B(2) ¹¹ —O(5)	1.454(6)
B(2) ¹¹ —O(7)	1.495(6)	B(3)—O(3)	1.491(6)
B(3)—O(4)	1.461(6)	B(3)—O(5)	1.482(6)
B(3)—O(6)	1.468(6)	B(4)—O(6)	1.382(6)
B(4)—O(7)	1.388(6)	B(4)—O(8)	1.363(6)
$B(5) - O(8)^3$	1.495(5)	B(5)—O(8)	1.495(5)
$B(5) - O(9)^3$	1.459(5)	B(5)—O(9)	1.459(6)
Ag(1)—O(2)	2.139(3)	$Ag(1) - O(2)^{10}$	2.139(3)
$Ag(2)^9 - O(1)$	2.174(4)	$Ag(2) - O(1)^{6}$	2.174(4)
Ag(2)—O(5)	2.300(3)	Ag(2)—O(7)	2.652
Ag(2)—O(9)	2.665	Ag(3)—O(4)	2.232(3)
$Ag(3) - O(5)^2$	2.507(3)	$Ag(3) - O(7)^3$	2.536(3)
Ag(3)—O(9) ⁴	2.348(4)	Ag(3) ² —O(5)	2.507(3)
$Ag(3)^{3}-O(7)$	2.536(3)	Ag(3) ¹² —O(9)	2.348(4)
$Ag(4) - O(1)^8$	2.349(4)	$Ag(4) - O(1)^9$	2.507(4)
$Ag(4)^{8}-O(1)$	2.349(4)	$Ag(4)^{6}-O(1)$	2.507(4)
Ag(4)—O(6)	2.499(3)		

Table S2(a). Important bond lengths for (1).

¹-*x*, +*y*, 1/2-*z*; ²1/2-*x*, 1/2-*y*, 1/2-*z*; ³1-*x*, +*y*, 1/2-*z*; ⁴-1/2+*x*, 3/2-*y*, +*z*; ⁵+*x*, -1+*y*, +*z*;

⁶ 1/2-*x*, -1/2+*y*, -*z*; ⁷+*x*, 1+*y*, +*z*; ⁸-*x*, 1-*y*, -*z*; ⁹ 1/2-*x*, 1/2+*y*, -*z*; ¹⁰-*x*, -*y*, -*z*;

¹¹ 1/2+*x*, 1/2-*y*, +*z*; ¹² 1/2+*x*, 3/2-*y*, +*z*; ¹³ -1/2+*x*, 1/2-*y*, +*z*

Bond Length(Å) for (2)			
B(1)—O(13)	1.365(9)	B(1)—O(14)	1.365(9)
B(1)—O(15)	1.358(10)	B(2)—O(12)	1.461(8)
$B(2) - O(12)^5$	1.461(8)	B(2)—O(13)	1.494(9)
$B(2) - O(13)^5$	1.494(9)	B(3)—O(6)	1.477(9)
B(3)—O(7)	1.462(9)	B(3)—O(12)	1.459(9)
B(3)—O(14)	1.509(9)	B(4)—O(5)	1.472(9)
B(4)—O(7)	1.472(9)	B(4)—O(8)	1.491(9)
B(4)—O(11)	1.434(9)	B(5)—O(3)	1.478(9)
B(5)—O(4)	1.497(9)	B(5)—O(5)	1.458(9)
B(5)—O(6)	1.458(9)	B(6)—O(2)	1.475(8)
$B(6) - O(2)^5$	1.474(8)	B(6)—O(3)	1.455(8)
$B(6) - O(3)^5$	1.455(8)	B(7)—O(1)	1.379(9)
B(7)—O(2)	1.351(9)	B(7)—O(4)	1.375(9)
B(8) ¹³ —O(1)	1.472(9)	$B(8) - O(1)^2$	1.472(9)
B(8)—O(10)	1.504(9)	B(8)—O(11)	1.407(9)
$B(8) - O(15)^3$	1.494(9)	B(8) ⁷ —O(15)	1.494(9)
B(9)—O(8)	1.362(10)	B(9)—O(9)	1.333(9)
B(9)—O(10)	1.392(9)	$Ag(1) - O(5)^8$	2.196(5)
Ag(1)—O(9)	2.104(5)	$Ag(1) - Cl(2)^9$	2.923(2)
$Ag(1)^{10}$ — $Cl(2)$	2.923(2)	Ag(1) ⁸ —O(5)	2.196(5)
$Ag(2)^{6}-Cl(1)$	2.742(2)	$Ag(2)^{8}-O(1)$	2.439(5)
$Ag(2)^{10}$ — $Cl(2)$	2.772(2)	$Ag(2) - Cl(1)^{6}$	2.742(2)
$Ag(2) - Cl(2)^9$	2.772(2)	$Ag(2) - O(1)^8$	2.439(5)
Ag(2)—O(10)	2.311(5)	Ag(3)—Cl(1)	2.556(2)
$Ag(3) - O(6)^4$	2.489(5)	Ag(3)—O(9)	2.316(5)
$Ag(3) - O(14)^4$	2.361(5)	Ag(3) ⁴ —O(14)	2.361(5)
Ag(3) ⁴ —O(6)	2.489(5)	$Ag(4)^{6}-Cl(1)$	2.670(2)
$Ag(4)^{12}$ — $Cl(2)$	2.819(2)	$Ag(4) - Cl(1)^{6}$	2.670(2)
Ag(4)—Cl(1)	2.632(2)	Ag(4)—O(7)	2.320(5)
$Ag(4)$ — $Cl(2)^{11}$	2.819(2)	Ag(5) ⁴ —O(8)	2.521(5)

 Table S2(b). Important bond lengths for (2).

Ag(5) ⁴ —O(4)	2.420(5)	Ag(5)—Cl(1)	2.774(2)
$Ag(5) - O(4)^4$	2.420(5)	Ag(5)—O(15)	2.448(5)
Ag(5)—O(8) ⁴	2.521(5)	Ag(6)—O(3) ¹¹	2.317(4)
Ag(6)—O(7)	2.306(5)	Ag(6)—O(12)	2.580(5)
Ag(6) ¹² —O(3)	2.317(4)	Ag(7)—O(6)	2.320(4)
$Ag(7) - O(3)^5$	2.451(4)	$Ag(7) - O(12)^5$	2.388(5)
Ag(7)—Cl(2) ⁵	2.545(19)	Ag(7) ⁵ —O(12)	2.388(5)
Ag(7) ⁵ —O(3)	2.451(4)	Ag(8) ¹³ —O(2)	2.458(5)
Ag(8) ⁷ —O(13)	2.388(5)	$Ag(8) - O(2)^2$	2.458(5)
Ag(8)—O(11)	2.311(5)	$Ag(8) - O(13)^3$	2.388(5)
Ag(8)—Cl(2)	2.519(2)		

¹-*x*, +*y*, 1/2-*z*; ²-1/2+*x*, -1/2+*y*, +*z*; ³-1/2+*x*, 1/2+*y*, +*z*; ⁴1-*x*, 1-*y*, 1-*z*; ⁵1-*x*, +*y*, 1/2-*z*; ⁶1/2-*x*, 1/2-*y*, 1-*z*; ⁷1/2+*x*, -1/2+*y*, +*z*; ⁸1/2-*x*, 3/2-*y*, 1-*z*; ⁹+*x*, 1-*y*, 1/2+*z*; ¹⁰+*x*, 1-*y*, -1/2+*z*; ¹¹1/2-*x*, -1/2+*y*, 1/2-*z*; ¹²1/2-*x*, 1/2+*y*, 1/2-*z*; ¹³1/2+*x*, 1/2+*y*, +*z*

Bond Length(Å) for (3)			
B(1)—O(1)	1.497(6)	B(1)—O(2)	1.478(5)
B(1)—O(3)	1.441(6)	$B(1)^{13}$ — $O(13)$	1.479(6)
B(1)—O(13) ¹	1.479(6)	B(2)—O(3)	1.448(6)
B(2)—O(4)	1.476(6)	B(2)—O(6)	1.443(6)
B(2)—O(7)	1.504(6)	B(3)—O(4)	1.371(6)
B(3)—O(5)	1.392(6)	B(3)—O(15) ¹⁶	1.344(6)
B(3) ¹⁶ —O(15)	1.344(6)	B(4)—O(5)	1.486(6)
B(4)—O(6)	1.423(5)	B(4)—O(9)	1.493(6)
B(4)—O(11)	1.487(6)	B(5)—O(8)	1.369(6)
B(5)—O(9)	1.369(6)	B(5)—O(10)	1.369(6)
$B(6) - O(1)^4$	1.469(6)	$B(6) - O(7)^4$	1.466(6)
B(6)—O(14) ⁷	1.475(6)	B(6)—O(10)	1.502(5)
$B(6)^2 - O(1)$	1.469(6)	B(6) ² —O(7)	1.466(6)
B(6) ⁷ —O(14)	1.475(6)	B(7)—O(11)	1.365(6)
B(7)—O(12)	1.379(6)	B(7)—O(13)	1.360(6)
B(8) ¹ —O(2)	1.466(6)	B(8)—O(2) ¹³	1.466(6)
B(8) ⁷ —O(8)	1.479(6)	B(8)—O(8) ⁷	1.479(6)
B(8)—O(12)	1.473(6)	B(8)—O(14)	1.463(6)
Ag(1)—O(1)	2.292(3)	$Ag(1) - O(2)^3$	2.477(3)
Ag(1) ¹³ —O(14)	2.398(3)	$Ag(1) - O(14)^{1}$	2.398(3)
$Ag(1) - Br(1)^3$	2.6158(6)	$Ag(1)^{3}$ — $Br(1)$	2.6158(6)
$Ag(2) - O(2)^{14}$	2.336(3)	$Ag(2)^{14}$ — $O(2)$	2.337(3)
Ag(2)—O(3)	2.184(3)	$Ag(2) - Br(1)^{14}$	2.8618(7)
$Ag(2)^{14}$ —Br(1)	2.8618(7)	Ag(3)—O(10)	2.411(3)
$Ag(3) - O(11)^6$	2.452(3)	Ag(3)—O(16) ⁵	2.516(4)
Ag(3) ⁶ —O(11)	2.452(3)	Ag(3) ¹¹ —O(16)	2.516(4)
Ag(4)—O(6)	2.317(3)	Ag(4)—O(8)	2.513(3)
Ag(4)—O(12)	2.364(3)	$Ag(5) - O(7)^8$	2.567(3)
Ag(5)—O(7)	2.567(3)	$Ag(5) - O(14)^8$	2.325(3)
Ag(5)—O(14)	2.325(3)	Ag(6)—O(7)	2.151(3)
Ag(6)—O(15)	2.096(3)	$Ag(7) - O(1)^{13}$	2.389(3)

 Table S2(c). Important bond lengths for (3).

Ag(7) ¹ —O(1) 2.389(3)	Ag(7)—O(15)	2.287(4)
Ag(7)—O(16	2.358(4)	Ag(8)—O(16) ¹²	2.101(4)
Ag(8)—O(16) 2.101(4)	Ag(9)—O(5) ¹¹	2.387(3)
Ag(9) ⁵ —O(5) 2.387(3)	Ag(9)—O(9) ¹⁰	2.569(3)
Ag(9) ¹⁰ —O(9	2.569(3)	Ag(9)—O(16)	2.406(4)

 $^{1}-1+x, +y, +z; ^{2}+x, -1+y, +z; ^{3}-x, 1-y, 1-z; ^{4}+x, 1+y, +z; ^{5}-1+x, 1+y, +z;$

⁶1-*x*, 2-*y*, 2-*z*; ⁷1-*x*, 2-*y*, 1-*z*; ⁸1-*x*, 1-*y*, 1-*z*; ⁹1+*x*, -1+*y*, 1+*z*; ¹⁰2-*x*, 1-*y*, 2-*z*;

 $^{11}1+x, -1+y, +z; \\ ^{12}2-x, -y, 2-z; \\ ^{13}1+x, +y, +z; \\ ^{14}-x, 2-y, 1-z; \\ ^{15}-1+x, 1+y, -1+z; \\ ^{16}1-x, 1-y, 2-z; \\$

Bond lengths (Å) for (4)			
B(1)—O(1)	1.343(6)	B(1)—O(2)	1.390(6)
B(1)—O(3)	1.377(6)	B(2)—O(2)	1.473(6)
B(2)—O(4)	1.465(5)	$B(2) - O(5)^{13}$	1.482(5)
$B(2) - O(14)^{12}$	1.479(5)	B(2) ⁹ —O(14)	1.479(5)
$B(2)^{13}$ — $O(5)$	1.482(5)	B(3)—O(3)	1.517(6)
B(3)—O(4)	1.449(5)	B(3)—O(8)	1.453(6)
B(3)—O(9)	1.489(6)	B(4)—O(5)	1.380(6)
B(4)—O(6)	1.371(6)	B(4)—O(7)	1.353(6)
B(5)—O(9)	1.386(6)	B(5)—O(10)	1.349(6)
B(5)—O(11)	1.371(6)	B(6)—O(8)	1.455(6)
B(6)—O(11)	1.480(6)	B(6)—O(12)	1.485(6)
B(6)—O(13)	1.483(6)	B(7) ¹⁷ —O(6)	1.480(6)
B(7)—O(12)	1.454(6)	B(7)—O(14)	1.473(6)
B(7)—O(15)	1.473(6)	$B(7) - O(6)^{18}$	1.480(6)
B(8)—O(13)	1.371(6)	B(8)—O(15)	1.378(6)
B(8)—O(16)	1.355(6)	Ag(1)—O(1)	2.211(3)
Ag(1)—O(3)	2.139(3)	Ag(1)—I(1)	2.6965(5)
$Ag(1) - O(12)^{6}$	2.575(3)	Ag(1) ⁶ —O(12)	2.575(3)
Ag(2)—O(1)	2.243(3)	$Ag(2) - O(14)^{6}$	2.292(3)
$Ag(2)^{6}-O(14)$	2.292(3)	$Ag(2) - I(2)^2$	2.8962(6)
$Ag(2)^{2}$ —I(2)	2.8962(6)	$Ag(3)^{1}-I(3)$	2.8532(5)
$Ag(3) - I(3)^{14}$	2.8532(5)	Ag(3)—O(2)	2.387(3)
Ag(3)—O(10) ¹⁴	2.346(3)	Ag(3) ¹ —O(10)	2.346(3)
Ag(4)—O(5)	2.308(3)	$Ag(4) - O(7)^{13}$	2.447(3)
Ag(4) ¹³ —O(7)	2.447(3)	$Ag(4)^{1}$ —I(3)	2.8113(5)
$Ag(4) - I(3)^{14}$	2.8112(5)	Ag(5)—O(4)	2.440(3)
Ag(5)—O(7)	2.249(3)	$Ag(5) - O(15)^{12}$	2.424(3)
Ag(5) ⁹ —O(15)	2.424(3)	Ag(6)—O(9)	2.255(3)
Ag(6)—O(14) ¹²	2.404(3)	Ag(6) ⁹ —O(14)	2.404(3)
$Ag(6) - I(2)^3$	2.7774(5)	$Ag(6)^{3}$ —I(2)	2.7774(5)
Ag(7)—O(10)	2.255(3)	$Ag(7) - O(12)^4$	2.449(3)

 Table S2(d). Important bond lengths for (4).
 Control

Ag(7) ⁴ —O(12)	2.449(3)	Ag(7)—I(2)	2.7408(6)
Ag(8)—O(10)	2.239(3)	$Ag(8) - O(1)^1$	2.559(3)
Ag(8)—O(3) ⁴	2.306(3)	Ag(8) ¹⁴ —O(1)	2.559(3)
Ag(8) ⁴ —O(3)	2.306(3)	Ag(9)—O(13)	2.359(3)
Ag(9)—O(16) ¹¹	2.240(3)	Ag(9) ¹¹ —O(16)	2.239(3)
Ag(9)—I(3)	2.6886(5)	Ag(10)—O(16)	2.303(3)
Ag(10)—O(6) ⁹	2.486(3)	Ag(10) ¹² —O(6)	2.486(3)
Ag(10)—O(8) ¹¹	2.381(3)	Ag(10) ¹¹ —O(8)	2.381(3)
$Ag(10) - I(1)^8$	2.9118(5)	$Ag(10)^{5}-I(1)$	2.9118(5)
Ag(11)—O(7) ¹¹	2.184(6)	Ag(11) ¹¹ —O(7)	2.184(6)
$Ag(11) - I(1)^4$	2.703(9)	$Ag(11)^4 - I(1)$	2.703(9)
Ag(11)—O(16)	2.214(5)	Ag(12)—O(16)	2.372(5)
Ag(12)—O(7) ¹¹	2.321(4)	Ag(12) ¹¹ —O(7)	2.321(4)
$Ag(12) - I(1)^4$	2.997(5)	$Ag(12)^4 - I(1)$	2.997(5)
$Ag(12) - I(2)^4$	2.916(7)	$Ag(12)^4 - I(1)$	2.916(7)

Bond Angles (deg) for (1)			
O(1)—B(1)—O(2)	117.6(4)	O(1)—B(1)—O(3)	124.2(5)
O(3)—B(1)—O(2)	118.2(4)	O(4)—B(2)—O(2)	109.1(4)
$O(4)$ — $B(2)$ — $O(7)^{13}$	111.7(4)	O(5) ¹³ —B(2)—O(4)	108.7(4)
O(5) ¹³ —B(2)—O(2)	111.2(4)	$O(5)^{13}$ — $B(2)$ — $O(7)^{13}$	109.8(4)
O(7) ¹³ —B(2)—O(2)	106.4(4)	O(4)—B(3)—O(5)	108.4(4)
O(4)—B(3)—O(3)	110.0(4)	O(4)—B(3)—O(6)	109.1(4)
O(5)—B(3)—O(3)	110.9(4)	O(6)—B(3)—O(5)	110.6(4)
O(6)—B(3)—O(3)	107.9(4)	O(8)—B(4)—O(6)	123.0(4)
O(8)—B(4)—O(7)	116.8(4)	O(6)—B(4)—O(7)	120.2(4)
O(8)—B(5)—O(8) ³	109.7(5)	O(9)—B(5)—O(8) ³	110.9(2)
O(9)—B(5)—O(8)	108.71(19)	O(9) ³ —B(5)—O(8)	110.9(2)
$O(9)^{3}$ — $B(5)$ — $O(8)^{3}$	108.71(19)	$O(9) - B(5) - O(9)^3$	107.8(6)

 Table S3(a).
 Selected bond angles (deg) for (1).

¹-x, +y, 1/2-z; ²1/2-x, 1/2-y, 1/2-z; ³1-x, +y, 1/2-z; ⁴-1/2+x, 3/2-y, +z; ⁵+x, -1+y, +z; ⁶1/2-x, -1/2+y, -z; ⁷+x, 1+y, +z; ⁸-x, 1-y, -z; ⁹1/2-x, 1/2+y, -z; ¹⁰-x, -y, -z; ¹¹1/2+x, 1/2-y, +z; ¹²1/2+x, 3/2-y, +z; ¹³-1/2+x, 1/2-y, +z

Bond Angles (deg) for (2)			
O(1)—B(1)—O(11)	116.4(3)	$O(7)^{1}$ — $B(1)$ — $O(1)$	124.4(3)
O(13)—B(1)—O(14)	120.3(7)	O(15)—B(1)—O(14)	117.0(7)
O(15)—B(2)—O(13)	122.7(7)	O(13)—B(2)—O(13) ⁵	104.2(8)
O(12)—B(2)—O(13) ⁵	108.9(3)	O(12)—B(2)—O(13)	110.1(3)
O(12) ⁵ —B(2)—O(13)	108.9(3)	O(12) ⁵ —B(2)—O(13) ⁵	110.1(3)
$O(12) - B(2) - O(12)^5$	114.2(9)	O(6)—B(3)—O(14)	105.7(5)
O(7)—B(3)—O(6)	111.2(6)	O(7)—B(3)—O(14)	107.7(6)
O(12)—B(3)—O(6)	114.0(6)	O(12)—B(3)—O(14)	110.8(6)
O(12)—B(3)—O(7)	107.3(6)	O(11)—B(4)—O(5)	109.9(6)
O(11)—B(4)—O(7)	108.9(6)	O(11)—B(4)—O(8)	110.9(6)
O(5)—B(4)—O(7)	108.9(6)	O(5)—B(4)—O(8)	109.2(6)
O(7)—B(4)—O(8)	109.0(6)	O(6)—B(5)—O(3)	112.8(6)
O(6)—B(5)—O(4)	108.7(6)	O(5)—B(5)—O(6)	111.0(6)
O(5)—B(5)—O(3)	106.3(6)	O(5)—B(5)—O(4)	109.1(6)
O(3)—B(5)—O(4)	108.8(6)	O(3) ⁵ —B(6)—O(3)	114.6(9)
$O(3)^{5}$ — $B(6)$ — $O(2)$	108.1(3)	$O(3)^5 - B(6) - O(2)^5$	110.3(3)
O(3)—B(6)—O(2) ⁵	108.1(3)	O(3)—B(6)—O(2)	110.3(3)
$O(2)^{5}$ — $B(6)$ — $O(2)$	105.0(8)	O(2)—B(7)—O(4)	120.3(7)
O(2)—B(7)—O(1)	122.1(7)	O(4)—B(7)—O(1)	117.5(7)
O(11)—B(8)—O(1) ²	114.1(6)	O(11)—B(8)—O(15) ³	114.7(6)
O(11)—B(8)—O(10)	111.3(6)	$O(1)^2 - B(8) - O(15)^3$	105.7(6)
O(1) ² —B(8)—O(10)	106.7(6)	O(15) ³ —B(8)—O(10)	103.5(5)
O(8)—B(9)—O(10)	119.8(7)	O(9)—B(9)—O(10)	122.4(7)
O(9)—B(9)—O(8)	117.7(7)		

 Table S3(b).
 Selected bond angles (deg) for (2).

¹-*x*, +*y*, 1/2-*z*; ²-1/2+*x*, -1/2+*y*, +*z*; ³-1/2+*x*, 1/2+*y*, +*z*; ⁴1-*x*, 1-*y*, 1-*z*; ⁵1-*x*, +*y*, 1/2-*z*; ⁶1/2-*x*, 1/2-*y*, 1-*z*; ⁷1/2+*x*, -1/2+*y*, +*z*; ⁸1/2-*x*, 3/2-*y*, 1-*z*; ⁹+*x*, 1-*y*, 1/2+*z*; ¹⁰+*x*, 1-*y*, -1/2+*z*; ¹¹1/2-*x*, -1/2+*y*, 1/2-*z*; ¹²1/2-*x*, 1/2+*y*, 1/2-*z*; ¹³1/2+*x*, 1/2+*y*, +*z*

Bond Angles (deg) for (3)			
O(1)—B(1)—O(3)	109.7(4)	O(2)—B(1)—O(3)	109.4(4)
$O(3) - B(1) - O(13)^2$	110.6(4)	O(2)—B(1)—O(1)	110.8(4)
$O(2) - B(1) - O(13)^2$	110.1(3)	$O(1) - B(1) - O(13)^2$	106.2(3)
O(6)—B(2)—O(7)	109.3(4)	O(6)—B(2)—O(3)	108.9(4)
O(6)—B(2)—O(4)	111.8(4)	O(3)—B(2)—O(7)	107.9(4)
O(3)—B(2)—O(4)	111.5(4)	O(4)—B(2)—O(7)	107.3(3)
O(4)—B(3)—O(5)	120.6(4)	O(15) ¹⁶ —B(3)—O(5)	121.5(4)
O(15) ¹⁶ —B(3)—O(4)	117.8(4)	O(6)—B(4)—O(9)	113.0(4)
O(6)—B(4)—O(11)	114.8(4)	O(6)—B(4)—O(5)	112.0(4)
O(11)—B(4)—O(9)	106.0(4)	O(5)—B(4)—O(9)	105.4(3)
O(5)—B(4)—O(11)	104.9(3)	O(9)—B(5)—O(8)	121.4(4)
O(9)—B(5)—O(10)	118.4(4)	O(10)—B(5)—O(8)	120.3(4)
O(14) ⁷ —B(6)—O(10)	110.2(3)	O(14) ⁷ —B(6)—O(7) ⁵	106.7(3)
$O(1)^1 - B(6) - O(7)^5$	111.2(3)	O(10)—B(6)—O(7) ⁵	108.3(4)
O(14) ⁷ —B(6)—O(1) ⁵	112.7(4)	O(10)—B(6)—O(1) ⁵	107.7(3)
O(12)—B(7)—O(11)	121.7(4)	O(13)—B(7)—O(11)	118.0(4)
O(12)—B(7)—O(12)	120.3(4)	O(14)—B(8)—O(8) ⁷	109.8(4)
O(14)—B(8)—O(2) ¹³	113.8(4)	O(14)—B(8)—O(12)	108.8(4)
$O(2)^{13}$ — $B(8)$ — $O(8)^7$	107.6(4)	O(2) ¹³ —B(8)—O(12)	110.5(4)
O(12)—B(8)—O(8) ⁷	106.1(4)		

 Table S3(c).
 Selected bond angles (deg) for (3).

 $^{1}-1+x$, +y, +z; $^{2}+x$, -1+y, +z; $^{3}-x$, 1-y, 1-z; $^{4}+x$, 1+y, +z; $^{5}-1+x$, 1+y, +z;

⁶ 1-*x*, 2-*y*, 2-*z*; ⁷ 1-*x*, 2-*y*, 1-*z*; ⁸ 1-*x*, 1-*y*, 1-*z*; ⁹ 1+*x*, -1+*y*, 1+*z*; ¹⁰ 2-*x*, 1-*y*, 2-*z*;

 $^{11}1+x, -1+y, +z; \\ ^{12}2-x, -y, 2-z; \\ ^{13}1+x, +y, +z; \\ ^{14}-x, 2-y, 1-z; \\ ^{15}-1+x, 1+y, -1+z; \\ ^{16}1-x, 1-y, 2-z; \\$

Bond Angles (deg) for (4)			
O(2)—B(1)—O(3)	119.4(4)	O(1)—B(1)—O(3)	123.3(4)
O(1)—B(1)—O(2)	117.2(4)	$O(4)$ — $B(2)$ — $O(14)^{12}$	113.4(4)
$O(4)$ — $B(2)$ — $O(5)^{13}$	106.9(3)	O(4)—B(2)—O(2)	110.2(3)
$O(14)^{12}$ $B(2)$ $O(5)^{13}$	110.7(3)	$O(2)$ — $B(2)$ — $O(14)^{12}$	107.9(3)
$O(2)$ — $B(2)$ — $O(5)^{13}$	107.5(3)	O(8)—B(3)—O(9)	109.1(3)
O(8)—B(3)—O(3)	110.0(4)	O(4)—B(3)—O(8)	111.2(4)
O(4)—B(3)—O(9)	110.2(4)	O(4)—B(3)—O(3)	110.2(3)
O(9)—B(3)—O(3)	105.9(3)	O(7)—B(4)—O(5)	119.9(4)
O(7)—B(4)—O(6)	121.5(4)	O(5)—B(4)—O(6)	118.6(4)
O(10)—B(5)—O(9)	120.0(4)	O(10)—B(5)—O(11)	121.3(4)
O(11)—B(5)—O(9)	118.6(4)	O(13)—B(6)—O(12)	109.5(3)
O(8)—B(6)—O(13)	108.7(4)	O(8)—B(6)—O(12)	112.9(4)
O(11)—B(6)—O(8)	110.8(3)	O(11)—B(6)—O(13)	108.3(4)
O(11)—B(6)—O(12)	106.6(4)	O(14)—B(7)—O(6) ¹⁸	111.0(4)
O(14)—B(7)—O(12)	109.4(4)	O(12)—B(7)—O(15)	111.6(4)
O(12)—B(7)—O(6) ¹⁸	109.4(4)	O(15)—B(7)—O(14)	107.0(3)
O(15)—B(7)—O(6) ¹⁸	108.4(4)	O(13)—B(8)—O(15)	118.7(4)
O(16)—B(8)—O(13)	121.8(4)	O(16)—B(8)—O(15)	119.5(4)

 Table S3(d).
 Selected bond angles (deg) for (4).

 $\begin{array}{c} 5/2-x, \ 5/2-y, \ 1-z, \ -1/2+x, \ 5/2-y, \ -1/2+z, \ 3/2-y, \ 1/2+z, \ 3/2-y, \ 1/2+z, \ 3/2-z, \ 1/2+x, \ 1/2+y, \ +z; \\ 1^{11}1-x, \ +y, \ 3/2-z; \ 1^{2}1/2+x, \ -1/2+y, \ +z; \ 1^{3}2-x, \ +y, \ 3/2-z; \ 1^{4}1/2+x, \ 1/2+y, \ +z; \\ 1^{5}1/2+x, \ 3/2-y, \ 1/2+z; \ 1^{6}1+x, \ +y, \ +z; \ 1^{7}3/2-x, \ -1/2+y, \ 3/2-z; \ 1^{8}3/2-x, \ 1/2+y, \ 3/2-z \end{array}$

Atom	x	у	Z	$U_{ m eq}$ ^a /Å ²
Ag(1)	0	0	0	44.6(2)
Ag(2)	3410.1(6)	101.6(5)	999.5(2)	29.39(14)
Ag(3)	1643.0(5)	3795.6(5)	2636.4(2)	23.95(14)
Ag(4)	1691.4(5)	7063.4(5)	889.3(3)	30.10(15)
B(1)	1238(6)	3155(6)	172(3)	11.4(11)
B(2)	409(6)	2161(6)	1241(3)	8.8(10)
B(3)	2719(6)	3827(6)	1255(3)	9.4(10)
B(4)	4976(6)	5431(6)	1710(3)	10.7(11)
B(5)	5000	7664(8)	2500	9.0(14)
O(1)	972(4)	3082(4)	-498.9(17)	16.1(7)
O(2)	478(4)	2104(4)	513.9(16)	14.2(7)
O(3)	2220(4)	4181(4)	537.5(16)	12.9(7)
O(4)	1392(4)	3382(4)	1547.3(15)	9.8(7)
O(5)	3847(3)	2567(4)	1347.6(16)	9.3(7)
O(6)	3402(4)	5204(4)	1586.4(17)	12.2(7)
O(7)	5953(4)	4349(4)	1519.2(17)	12.6(7)
O(8)	5650(4)	6689(4)	2020.6(17)	12.7(7)
O(9)	6221(4)	8637(4)	2845.3(18)	14.8(8)
H(9)	7030(70)	8380(70)	2880(30)	19(17)

Table S4(a). Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (1). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyckfoff site	x	У	Z	$U_{ m eq}$ ²/Ų
Ag(1)	8f	2482.4(5)	6616.7(6)	6183.8(3)	28.58(18)
Ag(2)	8f	977.8(5)	4323.8(6)	5441.9(3)	26.73(18)
Ag(3)	8f	4524.3(5)	4812.7(6)	5604.4(3)	28.22(19)
Ag(4)	8f	2693.9(6)	3051.8(6)	4111.0(3)	37.3(2)
Ag(5)	8f	5686.6(4)	2626.1(6)	5174.5(3)	19.80(17)
Ag(6)	8f	2373.9(5)	3261.4(6)	2621.5(3)	34.3(2)
Ag(7)	8f	6157.3(4)	5642.2(6)	3060.2(3)	17.93(16)
Ag(8)	8f	1189.5(4)	5718.7(6)	2577.8(3)	17.91(16)
Cl(1)	8f	3683.9(15)	2800.4(19)	5210.0(10)	24.6(5)
Cl(2)	8f	2033.1(14)	5894.2(18)	1597.3(9)	17.4(5)
B(1)	8f	5151(6)	2606(8)	3625(4)	9(2)
B(2)	4e	5000	3225(11)	2500	14(3)
B(3)	8f	4126(6)	4483(8)	3279(4)	6.0(18)
B(4)	8f	2732(6)	5670(8)	3672(4)	10(2)
B(5)	8f	4082(6)	6902(8)	3268(4)	8.6(19)
B(6)	4e	5000	8157(11)	2500	11(3)
B(7)	8f	5067(6)	8820(8)	3609(4)	7.6(19)
B(8)	8f	1051(6)	5672(7)	4101(4)	4.5(18)
B(9)	8f	2613(6)	5772(8)	4831(4)	12(2)
O(1)	8f	5342(3)	9643(4)	4084(2)	9.7(12)
O(2)	8f	5312(3)	8993(4)	3024(2)	11.7(12)
O(3)	8f	4161(3)	7424(4)	2641(2)	7.9(11)
O(4)	8f	4502(3)	7818(4)	3745(2)	7.8(11)
O(5)	8f	3043(3)	6759(4)	3327(2)	8.0(11)
O(6)	8f	4592(3)	5718(4)	3368(2)	9.0(11)
O(7)	8f	3100(3)	4531(4)	3396(2)	8.3(11)
O(8)	8f	3151(3)	5760(5)	4334(2)	17.0(13)
O(9)	8f	3086(4)	5917(4)	5395(2)	16.7(13)
O(10)	8f	1604(3)	5651(4)	4737(2)	9.2(11)
O(11)	8f	1688(3)	5616(4)	3630(2)	9.1(11)
O(12)	8f	4169(3)	3965(4)	2657(2)	9.0(11)
O(13)	8f	5328(4)	2369(4)	3025(2)	14.7(12)
O(14)	8f	4648(3)	3647(4)	3766(2)	10.5(12)
O(15)	8f	5462(3)	1841(4)	4105(2)	9.8(12)

Table S4(b). Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (2). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyckfoff site	x	у	Z	$U_{ m eq}{}^{ m a}/{ m \AA}^2$
Ag(1)	2i	-1066.3(4)	3774.7(4)	6147.5(4)	15.93(9)
Ag(2)	2i	535.1(5)	10381.3(5)	6106.5(5)	35.53(13)
Ag(3)	2i	3119.4(5)	13366.0(5)	9719.0(3)	18.79(10)
Ag(4)	2i	3762.4(5)	8829.5(5)	5165.8(3)	18.04(10)
Ag(5)	1h	5000	5000	5000	33.54(17)
Ag(6)	2i	5435.3(5)	4567.2(5)	7820.1(4)	19.71(10)
Ag(7)	2i	9817.3(5)	4194.2(6)	8792.0(4)	33.22(13)
Ag(8)	la	10000	0	10000	27.43(15)
Ag(9)	2i	13448.6(5)	-228.0(5)	10743.5(4)	21.12(10)
Br(1)	2i	2613.9(6)	8393.1(6)	3125.3(5)	17.87(12)
B(1)	2i	-229(6)	6883(6)	6530(4)	7.4(10)
B(2)	2i	2360(6)	7059(6)	7383(5)	7.7(10)
B(3)	2i	2893(6)	6707(6)	9683(5)	8.5(10)
B(4)	2i	4216(6)	8519(6)	8227(4)	6.0(9)
B(5)	2i	3326(6)	11524(6)	7312(5)	7.9(10)
B(6)	2i	2319(6)	14506(6)	6615(4)	6.4(9)
B(7)	2i	6950(6)	7585(6)	7196(4)	6.4(9)
B(8)	2i	7416(6)	7374(6)	4953(5)	7.8(10)
O(1)	2i	613(3)	5144(4)	6753(3)	7.4(6)
O(2)	2i	-962(4)	7405(4)	5257(3)	8.0(6)
O(3)	2i	877(4)	7807(4)	6684(3)	9.9(6)
O(4)	<i>2i</i>	2095(4)	6445(4)	8698(3)	13.8(7)
O(5)	<i>2i</i>	3865(4)	7752(4)	9491(3)	8.8(6)
O(6)	2i	3314(4)	8192(4)	7274(3)	7.4(6)
O(7)	<i>2i</i>	3205(3)	5652(4)	6817(3)	7.8(6)
O(8)	2i	3201(4)	11308(4)	6108(3)	12.4(7)
O(9)	2i	3888(4)	10258(4)	8264(3)	10.2(6)
O(10)	2i	2868(4)	13024(4)	7592(3)	9.7(6)
O(11)	2i	5962(4)	7945(4)	8141(3)	11.2(7)
O(12)	2i	6378(4)	7718(4)	5997(3)	10.6(7)
O(13)	<i>2i</i>	8535(4)	7073(4)	7470(3)	10.7(7)
O(14)	<i>2i</i>	7298(4)	5861(4)	4638(3)	7.5(6)
O(15)	<i>2i</i>	7256(4)	4117(5)	9176(3)	18.6(8)
O(16)	<i>2i</i>	11040(4)	1846(4)	10209(3)	20.2(8)
H(15)	2i	7900(200)	4400(300)	8700(200)	420(160)

Table S4(c). Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (3). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Wyckoff site	x	У	Z	$U_{ m eq}{}^{ m a}/{ m \AA}^2$
Ag(1)	8f	8162.1(3)	7006.8(3)	4191.4(2)	23.47(9)
Ag(2)	8f	10317.2(3)	6249.2(4)	4842.3(2)	35.44(12)
Ag(3)	8f	10276.0(3)	7147.8(3)	5975.2(2)	31.13(11)
Ag(4)	8f	11037.8(4)	6413.8(3)	7843.7(2)	34.19(11)
Ag(5)	8f	8031.3(3)	3921.7(3)	7137.5(2)	18.20(8)
Ag(6)	8f	7593.0(3)	2987.0(3)	5831.0(3)	43.53(14)
Ag(7)	8f	6073.4(3)	3488.8(4)	4686.9(2)	30.20(11)
Ag(8)	8f	3593.6(3)	3716.3(3)	5168.4(2)	28.85(10)
Ag(9)	8f	5974.0(3)	4806.9(3)	7205.7(2)	24.66(9)
Ag(10)	8f	3099.9(3)	7331.1(3)	7971.9(2)	19.99(9)
Ag(11)	8f	2577(6)	5143(11)	6853(6)	47(2)
Ag(12)	8f	2420(3)	5446(4)	6690(2)	37.8(8)
I(1)	8f	6547.5(2)	6605.0(3)	3538.3(2)	23.06(8)
I(2)	8f	7957.2(2)	4082.5(3)	4435.9(2)	22.45(8)
I(3)	8f	6255.3(2)	2750.2(2)	6962.8(2)	16.64(7)
B(1)	8f	8475(4)	6134(4)	5430(2)	10.9(9)
B(2)	8f	9038(3)	4946(4)	6194.1(19)	8.6(9)
B(3)	8f	7177(3)	5436(4)	6049.7(19)	9.4(9)
B(4)	8f	9492(4)	4548(4)	8151(2)	12.0(10)
B(5)	8f	5635(4)	4487(4)	5696(2)	10.9(9)
B(6)	8f	5422(4)	6172(4)	6215(2)	10.6(9)
B(7)	8f	4728(4)	8040(4)	6339(2)	10.5(9)
B(8)	8f	4180(4)	6591(4)	6915.5(19)	11.4(10)
O(1)	8f	8752(2)	6713(3)	5014.5(13)	17.7(7)
O(2)	8f	9229(2)	5663(2)	5748.2(12)	12.3(6)
O(3)	8f	7496(2)	6015(3)	5558.4(12)	13.3(6)
O(4)	8f	8043(2)	5146(2)	6386.5(12)	10.7(6)
O(5)	8f	10231(2)	5210(2)	8363.4(12)	12.6(6)
O(6)	8f	9433(2)	3532(2)	8344.7(14)	17.4(7)
O(7)	8f	8835(2)	4914(3)	7768.2(13)	17.1(7)
O(8)	8f	6493(2)	6095(2)	6334.3(12)	13.6(6)
O(9)	8f	6641(2)	4463(2)	5852.6(13)	13.0(6)
O(10)	8f	5215(2)	3658(2)	5427.8(13)	14.9(7)
O(11)	8f	5088(2)	5369(2)	5814.5(13)	14.9(7)
O(12)	8f	5113(2)	7224(2)	5995.3(12)	11.2(6)
O(13)	8f	4900(2)	5964(2)	6709.1(12)	14.4(7)
O(14)	8f	4179(2)	8841(2)	6011.7(12)	10.1(6)
O(15)	8f	4021(2)	7594(2)	6707.3(13)	16.8(7)
O(16)	8f	3602(2)	6238(3)	7303.3(13)	15.9(7)

Table S4(d). Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (4). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Mode description of (1)	Absorption peaks (cm ⁻¹)
V _{as} (BO ₃)	1348.00, 1220.72
V _s (BO ₃)	1031.73, 966.16, 916.02
V _s (BO ₄)	846.60, 813.81
$\delta_{out}(BO_3)$	684.61, 611.33
$\delta(\mathrm{BO}_3,\mathrm{BO}_4)$	566.97, 534.19
V _c (OH)	3278.40

Table S5. Assignment of the absorption peaks observed in the IR spectra of (1), (2), (3) and (4).

Mode description of (2)	Absorption peaks (cm ⁻¹)		
V _{as} (BO ₃)	1361.50, 1295.93, 1249.65		
$V_{as}(BO_4)$	1143.58, 1116.58		
V _s (BO ₃)	993.16, 931.45, 896.74		
$V_{s}(BO_{4})$	829.31, 792.60, 725.11		
$\delta_{out}(BO_3)$	663.39, 603.61		
$\delta(\mathrm{BO}_3,\mathrm{BO}_4)$	541.90, 457.05		

Mode description of (3)	Absorption peaks (cm ⁻¹)		
V _{as} (BO ₃)	1292.22, 1247.72		
V _s (BO ₃)	1052.95, 995.09, 892.88		
$V_s(BO_4)$	829.24, 790.67, 723.18		
$\delta_{out}(BO_3)$	667.25		
$\delta(\mathrm{BO}_3,\mathrm{BO}_4)$	579.83, 534.19, 433.91		
V _c (OH)	3411.47		

Mode description of (4)	Absorption peaks (cm ⁻¹)		
V _{as} (BO ₃)	1340.28, 1261.22, 1216.87		
$V_{as}(BO_4)$	1062.59, 1018.23		
$V_{s}(BO_{3})$	875.23		
$V_{s}(BO_{4})$	821.53		
$\delta_{out}(BO_3)$	669.25, 632.53		
$\delta(\mathrm{BO}_3,\mathrm{BO}_4)$	555.40		

No.	Compounds	Space group	B–O Units	Dimension	Ref.
1	Ag ₇ B ₉ O ₁₆ (OH) ₂	<i>C</i> 2/ <i>c</i>	B ₁₅ O ₃₀ (OH) ₄	1	This work (1)
2	$Ag_8B_8O_{15}Cl_2$	<i>C</i> 2/ <i>c</i>	$\begin{array}{c} B_{18}O_{40}, B_{16}O_{36}, \\ B_{12}O_{26} \end{array}$	2	This work (2)
3	Ag ₈ B ₈ O ₁₅ (OH)Br	$P \overline{1}$	$\begin{array}{c} B_{18}O_{38}(OH)_2,B_{16}O_{36},\\ B_{12}O_{26}\end{array}$	2	This work (3)
4	$Ag_{11}B_8O_{16}I_3$	C2/c	B_9O_{20}	1	This work (4)
5	AgBO ₂ (I)	Pbca	B_3O_8	1	1
6	AgBO ₂ (II)	Сс	B ₃ O ₈	1	2
7	$Ag_2O(B_2O_3)_4$	$P2_{1}/c$	B5O10	3	3
8	Ag ₃ BO ₃ (I)	<i>R</i> 32	BO ₃	0	4
9	Ag ₃ BO ₃ (II)	$R \overline{3}c$	BO ₃	0	5
10	Ag ₆ [B ₁₂ O ₁₈ (OH) ₆]·3H ₂ O	$P2_{1}/c$	B ₁₂ O ₁₈ (OH) ₆	0	6
11	β -Ag ₂ B ₈ O ₁₃	$P2_{1}/c$	BO ₃	0	7
12	AgB ₃ O ₅	$Pna2_1$	BO_3, BO_4	3	8
13	$Ag_3B_5O_9$	$P2_{1}2_{1}2_{1}$	BO_3, BO_4	3	9
14	$Ag_2B_4O_7$	$P2_{1}/c$	BO_3, BO_4	3	10
15	α -Ag ₂ B ₈ O ₁₃	$P2_{1}/c$	BO ₃	0	11
16	β -Ag ₂ B ₈ O ₁₃	$P2_{1}/c$	B ₈ O ₁₃	0	12
17	$Ag_{16}B_4O_{10}$	$I4_{1}/a$	B_4O_{10}	1	13
18	$Ag_3B_6O_{10}I$	Pnma	B_6O_{10}	3	14
19	$Ag_4B_7O_{12}Cl$	$P \overline{1}$	B_4O_9, B_3O_7	2	15
20	$Ag_4B_7O_{12}Br$	$P \overline{1}$	B_4O_9, B_3O_7	2	15
21	$Ag_4B_7O_{12}I$	$P \overline{1}$	B_4O_9, B_3O_7	2	15
22	$Ag_4B_4O_7Br_2$	<i>P</i> 6 ₁ 22	B ₃ O ₈	3	16
23	$Ag_4B_4O_7I_2$	P6122	B ₃ O ₈	3	16
24	$Ag_3B_6O_{10}Br$	$Pnm2_1$	B_6O_{10}	3	17
25	$Ag_2Cs[B_{15}O_{24}]$	$P2_{1}2_{1}2$	B ₁₅ O ₂₄	3	18
26	AgSr(B ₇ O ₁₂)	C2/c	B7O12	2	19
27	Ag ₂ B ₁₀ O ₁₄ (OH) ₄ ·H ₂ O	$P \overline{1}$	$B_5O_8(OH)_2$	2	20
28	Ag ₂ B ₅ O ₈ (OH)·H ₂ O	$P2_{1}/c$	B ₅ O ₁₀ (OH)	1	20

Table S6. Reported inorganic stoichiometric Ag-borates with B–O framework.

Figure S1. Rietveld refiement for the powder X-ray diffraction pattern of (1).

Figure S2. Rietveld refiement for the powder X-ray diffraction pattern of (2).

Figure S3. Rietveld refiement for the powder X-ray diffraction pattern of (3).

Figure S4. Rietveld refiement for the powder X-ray diffraction pattern of (4).

Figure S5. Asymmetric units of (1) to (4), and the coordination environments of atoms.

Figure S6. (a) 2D structure of **(2)** along the *ab* plane, (b) 12-MR channel, (c) 20-MR channel, and (d) 16-MR channel.

Figure S7. (a) 2D structure of **(3)** along the *ab* plane, (b) 12-MR channel, (c) 20-MR channel, and (d) 16-MR channel.

Figure S8. The calculated refractive indices of (1), (2), (3) and (4).

References:

- 1 Brachtel, G. Jansen, M. Silber(1)-metaborat, AgBO₂, Z. anorg. allg. Chem. 1981, 478, 13–19.
- 2 Cerqueira, T. F. T. Lin, S. Amsler, M. Goedecker, S. Botti, S. Identification of Novel Cu, Ag, and Au Ternary Oxides from Global Structural Prediction, *Chem. Mater.* 2015, 27, 4562—4573.
- 3 Krogh-Moe, J. The crystal structure of silver tetraborate Ag₂O·4B₂O₃, Acta Cryst. 1965, 18, 77–81.
- 4 Jansen, M. Scheld, W. Silber(I)-orthoborat, Z. anorg. allg. Chem. 1981, 477, 85–89.
- 5 Jansen, M. Brachtel, G. Ag₃BO₃-II, eine neue Form von Silber(I)-orthoborat, Z. anorg. allg. Chem. 1982, 489, 42–46.
- 6 Skakibaie-Moghadam, M. Heller, G. Timper, U. Die Kristallstruktur von Ag₆[B₁₂O₁₈(OH)₆]·3H₂O, einem neuen Dodekaborat, Z. Krist. Cryst. Mater. 1990, 190, 85—96.
- 7 Penin, N. Touboul, M. Nowogrocki, G. Crystal structure of the second form of silver octoborate β-Ag₂B₈O₁₃, *Solid State Sci.* 2003, 5, 559–564.
- 8 Sohr, G. Falkowski, V. Schauperl, M. L. Liedl, K. R. Huppertz, H. Structure, Thermal Behavior, and Vibrational Spectroscopy of the Silver Borate AgB₃O₅, *Eur. J. Inorg. Chem.* **2015**, *3*, 527–533.
- 9 Sohr, G. Falkowski, V. Huppertz, H. The new silver borate Ag₃B₅O₉, J. Solid State Chem. 2015, 225, 114–119.
- 10 Ziegler, R. Purtscher, F. R. S. Hofer, T. S. Huppertz, H. High-pressure Synthesis, Structure, IR Spectroscopy, and Theoretical Calculations of the New Silver Tetraborate Ag₂B₄O₇ with a Unique Crystal Structure, *Eur. J. Inorg. Chem.* 2023, e202300120 (1 of 9).
- 11 Krogh-Moe, J. The crystal structure of silver tetraborate Ag₂O·4B₂O₃, Acta Cryst. 1965, 18, 77-81.
- 12 Penin, N. Touboul, M. Nowogrocki, G. Crystal structure of the second form of silver octoborate β -Ag₂B₈O₁₃, *Solid State Sci.* **2003**, 5, 559—564.
- 13 Vegas, A. Jenkins, H. D. B. A re-interpretation of the structure of the silver borate, Ag₁₆B₄O₁₀, in the light of the extended Zintl–Klemm concept, *Acta Cryst. B*, **2020**. B76, 865–874.
- 14 Du, Z. P. Zhou, Y. Zhao. S. G. Synthesis, Crystal Structure and Birefringence Properties of Silver Cluster Compound Ag₃B₆O₁₀I. *Chin. J. of Appl. Chem.* **2023**, 40, 229—235.
- 15 Volkov, S. N. Charkin, D. O. Firsova, V. A. Manelis, L. S. Banaru, A. M. Povolotskiy, A. V. Yukhno, V. A. Arsent'ev, M. Y. Savchenko, Y. Ugolkov, V. L. Krzhizhanovskaya, M. G. Bubnova, R. S. Aksenov, S. M. Ag₄B₇O₁₂X (X = Cl, Br, I) Heptaborate Family: Comprehensive Crystal Chemistry, Thermal Stability Trends, Topology, and Vibrational Anharmonicity, *Inorg. Chem.* **2023**, 62, 30–34.
- 16 Volkov, S. N. Charkin, D. O. Arsent'ev, Y. M. Povolotskiy, A. V. Stefanovich, S. Y. Ugolkov, V. L. KrzhizhanovskayaM. G. Shilovskikh, V. V. Bubnova, R. S. Bridging the Salt-Inclusion and Open-Framework Structures: The Case of Acentric Ag₄B₄O₇X₂ (X = Br, I) Borate Halides, *Inorg. Chem.* 2020, 59, 2655—2658.
- Volkov, S. N. Charkin, D. O. Kireev, V. E. Ugolkov, V. L. Krzhizhanovskaya, M. G. Tsvetov, N. S. Vaitieva, Y. A. Aksenov, S. M. Bubnova, R. S. A novel contribution to the M₃B₆O₁₀X hexaborate family: The new silver compound Ag₃B₆O₁₀Br and thermal behavior of Ag₃B₆O₁₀(NO₃) and Na₃B₆O₁₀I, *Solid State Sci.* 2023, 145, 107311—107317.
- 18 Wiesch, A. Bluhm, K. Ag₂Cs[B₁₅O₂₄]: An Anhydrous Quaternary Silver(I)-Borate with a New Helical Borate Anion. Z. Naturforsch., B: J. Chem. Sci. 1998, 53, 157—160.
- 19 Wiesch, A. Bluhm, K. AgSr(B₇O₁₂): Das erste wasserfreie quaternäre Silber(I)-Borat mit vierfach koordiniertem Silberion und einem neuartigen Boratanion, *Z. Naturforschung B.* **1997**, 52b, 227–230.
- 20 Volkov, S. N. Aksenov, S. M. Charkin, D. O. Banaru, A. M. Banaru, D. A. Vaitieva, Y. A. Krzhizhanovskaya, M. G. Yamnova, N. A. Kireev, V. E. Gosteva, A. N. Tsvetov, N. S. Savchenko, Y. E. Bubnova, R. S. Preparation of novel silver borates by soft hydrothermal synthesis in sealed tubes: New representatives of larderellite and veatchite families, *Solid State Sci.* 2024, 148, 107414—107425.