Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

.

Fig/Table	Table of Contents	Page. No
Fig. S1.	¹ H NMR spectrum of 1 in DMSO- d_6 at 25 °C.	3
Fig. S2.	¹³ C NMR spectrum of 1 in DMSO- d_6 at 25 °C.	4
Fig. S3.	¹ H NMR spectrum of 2 in DMSO- d_6 at 25 °C.	4
Fig. S4.	¹³ C NMR spectrum of 2 in DMSO- d_6 at 25 °C.	5
Fig. S5 .	¹ H NMR spectrum of 3 in DMSO- <i>d</i> ₆ at 25 °C	5
Fig. S6.	FT-IR spectrum of 1 at 25 °C (KBr method).	6
Fig. S7.	FT-IR spectrum of 2 at 25 °C (neat).	6
Fig. S8 .	FT-IR spectrum of 3 at 25 °C (neat).	7
Fig. S9 .	Powder XRD data analysis of 1-3 at 25 °C.	8
Fig S10.	Raman spectra of 1-3.	9
Fig S11.	UV-vis spectra of 1-3. $(1 \times 10^{-6} \text{ M THF})$.	10
Fig S12.	Solution state emission spectra of 1-3. Dash line-Ex spectra.	11
	Solid line-Em spectra (1 \times 10 ⁻⁶ M THF). See Table S4.	
Fig S13.	Solid state emission spectra of 1-3. Dash line-Ex spectra. Solid	12
	line-Em spectra (Crystalline state). See Table S4.	
Fig. S14.	Hydrogen-optimised truncated models of complex highlighting	12
	the two LCuI/LCuSe fragments of complexes $1(a)$, $2(b)$, $3(c)$.	
Fig. S15.	DFT computed potential energy scan (PES) surface for the	13
	formation of complex 1 from its two fragments LCuI-LCuI.	
	Colour code grey(carbon); red(oxygen); blue(nitrogen);	
	violet(iodine); hydrogen(white); cyan(copper); yellow(sulphur).	
Fig. S16.	NBO computed Second order perturbation donor-acceptor	14
-	interaction representing the strength of the $Cu-Cu(d^{10}-d^{10})$	
	interaction in complex 1. Colour code: grey(carbon);	
	red(oxygen); blue(nitrogen); violet(iodine); hydrogen(white);	
	cyan(copper); yellow(sulphur)	

Fig. S17.	NBO computed Second order perturbation donor-acceptor	14
	interaction representing the strength of the $Cu-Cu(d^{10}-d^{10})$	
	interaction in complex 2. Color code:	
	grey(carbon);red(oxygen);blue(nitrogen);violet(iodine);hydroge	
	n(white);cyan(copper);brown(selenium).	
Fig. S18.	NBO computed Second order perturbation donor-acceptor	15
	interaction representing the strength of the $Cu-Cu(d^{10}-d^{10})$	
	interaction in complex 3. Colour code:	
	grey(carbon);red(oxygen);blue(nitrogen);violet(iodine);hydroge	
	n(white);cyan(copper);brown(selenium).	
Fig. S19.	Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization	16
	energies ΔE of complex 1. The isosurface value for deformation	
	desnities is 0.0003. The direction of the deformation density plot	
	is from red to blue	
Fig. S20	Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization	17
	energies ΔE of complex 2 . The isosurface value for deformation	
	desnities is 0. 0003. The direction of the deformation density	
	plot is from red to blue.	
Fig. S21.	Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization	18
	energies ΔE of complex 3 . The isosurface value for deformation	
	desnities is 0. 0003. The direction of the deformation density	
	plot is from red to blue.	
Fig. S22.	a) Atomic orbitals corresponding to the Cu orbitals in complex	19
	1. b) Molecular energy level diagram for complex 1. c)	
	Molecular orbitals corresponding to the Cu-Cu interactions of	
	Cu AO'	
Fig. S23.	Reduced density gradient (RDG) analysis for complexes 1(a),	20
	2 (b), 3 (c).	
Fig. S24.	Energy levels of ten high-lying occupied orbitals and MOs for	21
	three types of bonding orbitals.	

Table S1.	The structural parameters of compounds 1-3	22
Table S2.	Selected bond lengths of 1-3	23
Table S3.	Selected bond angles of 1-3	24
Table S4	Photophysical properties of 1-3	24
Table S5.	Continuous Shape Measurement (CShM) for Cu(I) sites in	25
	Cu(I)-NHCh complexes 1 and 2	
Table S6.	Continuous Shape Measurement (CShM) for Cu(I) sites in	25
	Cu(I)-NHCh complex 3	

Fig. S1. ¹H NMR spectrum of **1** in DMSO- d_6 at 25 °C.

Fig. S2. ¹³C NMR spectrum of **1** in DMSO- d_6 at 25 °C.

Fig. S3. ¹H NMR spectrum of 2 in DMSO- d_6 at 25 °C.

Fig. S4. ¹³C NMR spectrum of **2** in DMSO- d_6 at 25 °C.

Fig. S5. ¹H NMR spectrum of **3** in DMSO- d_6 at 25 °C.

Fig. S6. FT-IR spectrum of 1 at 25 °C (KBr method).

Fig. S7. FT-IR spectrum of 2 at 25 °C (neat).

Fig. S8. FT-IR spectrum of 3 at 25 °C (neat).

Fig. S9. Powder XRD data analysis of 1-3.

Fig. S10. Raman spectra of 1-3.

We have characterised 1-3 using the Raman spectroscopy and reported the spectra in the range 100-300 cm⁻¹. We observed the weak signals for our samples. Unfortunately, the samples are unstable under high laser power to get better signals to noise ratio. Moreover, the copper(I)-

copper(I) interaction is known to give very weak signal at 206 cm⁻¹ (Ref. N. V. S. Harisomayajula, B.H. Wu, D.Y. Lu, T.-S. Kuo, I.C. Chen, Y.C. Tsai, *Angew. Chem. Int. Ed.* 2018, **57**, 9925-9932). By considering the sample stability under the laser power, we have collected the Raman data. We got the Cu-Cu bond at 206 cm⁻¹, which is comparable with literature Cu-Cu bond at 204 cm⁻¹.

Fig. S11. UV-vis spectra of 1-3. $(1 \times 10^{-6} \text{ M THF})$.

Fig. S12. Emission spectra of 1-3 in solution state. Dash line-Ex spectra. Solid line-Em spectra (1×10^{-6} M THF). See Table S4.

Fig. S13. Emission spectra of 1-3 in solid state. Dash line-Ex spectra. Solid line-Em spectra (Crystalline state). See Table S4.

Fig. S14. Hydrogen-optimised truncated models of complex highlighting the two LCuI/LCuSe fragments of complexes 1 (a), 2 (b), 3 (c).

Fig. S15. DFT computed potential energy scan (PES) surface by scanning Cu...Cu bond distance in 1.Colour code: grey (carbon); red (oxygen); blue (nitrogen); violet (iodine); hydrogen (white); cyan (copper); yellow (sulphur).

Fig. S16. NBO computed Second-order perturbation donor-acceptor interaction representing the strength of the Cu-Cu (d^{10} - d^{10}) interaction in complex **1**. Colour code: grey (carbon); red (oxygen); blue (nitrogen); violet (iodine); hydrogen (white); cyan (copper); yellow (sulphur).

Fig. S17. NBO computed Second order perturbation donor acceptor interaction representing the strength of the Cu-Cu (d^{10} - d^{10}) interaction in complex **2**. Colour code: grey (carbon); red (oxygen); blue (nitrogen);violet (iodine);hydrogen (white);cyan (copper);brown (selenium).

Fig. S18. NBO computed Second order perturbation donor acceptor interaction representing the strength of the Cu-Cu($d^{10}-d^{10}$) interaction in complex **3**. Colour code: grey(carbon); red(oxygen);blue(nitrogen);violet(iodine);hydrogen(white);cyan(copper);brown(selenium).

Fig. S19. Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization energies ΔE of complex 1. The isosurface value for deformation densities is 0.0003. The direction of the deformation density plot is from red to blue.

Figure S20: Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization energies ΔE of complex **2**. The isosurface value for deformation densities is 0.0003. The direction of the deformation density plot is from red to blue.

Figure S21: Plots of deformation densities $\Delta \rho_n$ and the orbital stabilization energies ΔE of complex **3**. The isosurface value for deformation densities is 0. 0003. The direction of the deformation density plot is from red to blue.

Figure S22: (a) Atomic orbitals corresponding to the Cu orbitals in complex 1. (b) Molecular energy level diagram for complex 1. (c) Molecular orbitals corresponding to the Cu-Cu interactions of Cu AO's.

Figure S23: Reduced density gradient (RDG) analysis for complexes 1 (a), 2 (b), 3 (c).

Figure S24. Frontier molecular orbitals of complex 1, representing different $\sigma \pi \delta$ interactions.

	1	2	3
Empirical Formula	$C_{50}H_{44}Cu_{2}I_{2}N_{4}S_{2}$	$C_{50}H_{44}Cu_2I_2N_4Se_2$	$C_{46}H_{54}Cl_6Cu_{1.98}F_{12}N_{12}P_2$
			Se _{3.99}
Formula Weight	1145.89	1239.69	1718.51
Temperature/K	298.0	298.0	298
Crystal System	triclinic	triclinic	monoclinic
Space Group	P-1	P-1	$P2_1/n$
a/Å	10.4449(3)	10.4551(17)	11.441(6)
b/Å	11.2293(3)	11.2312(17)	10.490(6)
c/Å	21.4005(6)	21.572(3)	27.824(15)
$\alpha/^{\circ}$	93.5040(10)	93.703(5)	90
β/°	94.2160(10)	93.917(5)	101.830(17)
$\gamma/^{\circ}$	111.4220(10)	111.497(5)	90
Volume/A ³	2319.83(11)	2340.3(6)	3268(3)
Ζ	2	2	2
$\rho_{\rm calc}/g^3$	1.640	1.759	1.746
μ/mm^{-1}	2.376	3.822	3.238
F(000)	1136.0	1208.0	1694.0
Crystal size/mm ³	$0.2\times0.03\times0.02$	$0.35 \times 0.3 \times 0.27$	0.09 imes 0.09 imes 0.09
Radiation	MoKα (λ = 0.71073)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	3.834 to 54.268	3.916 to 54.27	4.162 to 54.366
Index ranges	$\begin{array}{c} -13 \leq h \leq 13, -14 \\ \leq k \leq 14, -27 \leq l \leq \\ 27 \end{array}$	$\begin{array}{c} -13 \leq h \leq 13, -14 \leq k \leq \\ 14, -27 \leq l \leq 27 \end{array}$	$\begin{array}{c} -14 \leq h \leq 14, -13 \leq k \leq \\ 13, -34 \leq l \leq 35 \end{array}$
Reflections collected	47194	53681	28414
Independent reflections	$10254 [R_{int} = 0.0343, R_{sigma} = 0.02841$	$\begin{array}{l} 10311 \; [R_{int} = 0.0416, \\ R_{sigma} = 0.0299] \end{array}$	$\begin{array}{l} 7229 \; [R_{int} = 0.0689, \\ R_{sigma} = 0.0695] \end{array}$
Data/restraints/parameters	10254/0/546	10311/0/546	7229/0/384
Goodness-of-fit on F ²	1.020	1.037	1.032
Final R indexes [I>=2σ	$R_1 = 0.0291,$	$R_1 = 0.0298, wR_2 =$	$R_1 = 0.0588, wR_2 =$
(I)]	$wR_2 = 0.0623$	0.0675	0.1510
Final R indexes [all data]	$R_1 = 0.0453,$ $wR_2 = 0.0677$	$R_1 = 0.0360, wR_2 = 0.0707$	$R_1 = 0.1032, WR_2 = 0.1733$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.63	0.91/-0.83	0.91/-0.82

Table S1. The structural parameters of compounds 1-3.

	1	2	3	
Cu1-E1	2.2205(8)	2.3437(6)	$Se^{(1)} - Cu^{(1)}$	2.4294(14)
Cu1-I1	2.5475(4)	2.5986(6)	$Cu^{(1)} - Cu^{(1)1}$	2.5231(18)
Cu1-Cu2	2.5911(5)	2.5767(7)	$Se^{(1)} - C^{(6)}$	1.862(5)
Cu1-E2	2.2367(8)		$Cu^{(1)} - N^{(1)}$	2.082(5)
Cu2-I2	2.5439(4)	2.5689(5)	$Cu^{(1)} - Se^{(2)}$	2.5522(14)
			$Cu^{(1)} - Se^{(2)1}$	2.4175(14)
			$Se^{(1)} - Cu^{(1)}$	2.4294(14)

Table S2. Selected bond lengths of 1-3 (Å)

 Table S3. Selected bond angles of 1-3 [°]

	1	2	3	
E1-Cu1-I1	118.88(2)	117.99(2)	$C^{(6)}$ - $Se^{(1)}$ - $Cu^{(1)}$	86.62(17)
E2-Cu2-I1	117.88(2)	117.97(2)	$Se^{(1)} - Cu^{(1)} - Cu^{(1)}$	123.18(5)
C1-E1-Cu1	102.92(9)	92.26(9)	$Se^{(1)} - Cu^{(1)} - Se^{(2)}$	96.88(4)
N1-C1-E1	125.49(18)	126.7(2)	$Cu^{(1)1} - Cu^{(1)} - Se^{(2)}$	56.89(4)
E1-Cu1-Cu2	167.02(3)	170.71(2)	$N^{(1)} - Cu^{(1)} - Se^{(1)}$	94.71(13)
Cu1-I1-Cu2	58.705(12)	59.995(16)	$N^{(1)}$ - $Cu^{(1)}$ - $Cu^{(1)1}$	141.00(14)
			$N^{(1)} - Cu^{(1)} - Se^{(2)1}$	111.74(14)
			$N^{(1)} - Cu^{(1)} - Se^{(2)}$	114.67(14)
			$Se^{(2)1} - Cu^{(1)} - Se^{(1)}$	116.40(4)
			$Se^{(2)1} - Cu^{(1)} - Cu^{(1)1}$	62.16(3)
			$Se^{(2)1} - Cu^{(1)} - Se^{(2)}$	119.05(5)

Table S4. Photophysical properties of 1-3.

Compound	$\lambda_{abs,}$ nm	λ_{ex} , nm	λ_{em} , nm	λ_{ex} , nm	λ_{em} , nm
		(solution)	(solution)	(solid)	(solid)
1	249 and 327	276	391, 417	200	400, 419
2	253, 314, 352, 369 and 389	254	414, 419, 437	204	398, 417
3	319	291	346, 407	319	360, 403

Complex	1	2
Metal Site	Cu(I)	Cu(I)
(ML_3)		
TP-3	0.235	0.107
vT-3	3.239	2.936
fvOC-3	11.275	10.836
mvOC-3	8.853	9.135

Table S5. Continuous Shape Measurement (CShM) for Cu(I) sites in Cu(I)-NHCh complexes1 and 2

TP-3: Trigonal (D3h)

vT-3: Vacant tetrahedron(C3v) fvOC-3: fac-Trivacant octahedron (C3v) mvOC-3: mer-Trivacant octahedron (C2v)

Table S6. Continuous Shape Measurement (CShM) for Cu(I) sites in Cu(I)-NHCh complex 3

Complex	3		
Metal Site	Cu(I)		
(ML_4)			
SP-4	28.146		
T-4	1.682		
SS-4	8.126		
vTBPY-4	2.983		
SP-4: Sq	uare (D4h)		
1-4: 1 etra	1-4: 1 etrahedron(1d)		
SS-4: Seesaw(C2v)			
vTBPY-4: Vacant trigonal			
bipyramid(C3v)			