Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting information

Lingwei Yu^a, Ying Zhang^{a*}, Leyi Zhou^a, Yaqi Wang^a, Xinru Ma^a, Zhangkun Hou^a, Leyi Zhou^a, Yaqi Wang^a, Xinru Ma^a, Hongchuan Zhang^a, Sai Xie^a, Zifeng Yan^{a*}

a State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China. Email: <u>yzhang@upc.edu.cn</u>; <u>zfyancat@upc.edu.cn</u>

Fig. S1 TEM image of Cu-CeO₂.

Fig. S2 (a) Ce3d spectra of CeO₂ and CeO_{2-x}. (b) O1s spectra of CeO₂ and CeO_{2-x}.

Table. S1 XPS analysis of CeO_2 and CeO_{2-x}					
Sample	CeO ₂	CeO _{2-x}			
Ce^{3+}/Ce^{4+}	0.80	0.93			
$O_{ad}/(O_{ad}+O_L)$	0.40	0.47			

Fig. S4 Ce3d spectra, Cu2p spectra and O1S spectra of Cu-CeO $_{2-X}$ after reaction

	2.1	2.1	
Sample	C_{11} C_{20}	Cu-CeO _{2-x} after	
	Cu-CCO _{2-x}	reaction	
Ce ³⁺ /Ce ⁴⁺	0.59	0.58	
$O_{ad}/(O_{ad}+O_L)$	0.41	0.40	
(Cu ⁰⁺ Cu ⁺)/Cu	0.84	0.87	

Table. S2 XPS analysis of Cu-CeO_{2-x} and Cu-CeO_{2-x} after reaction

Catalyst	Production	Faradic efficiency	Potential	Current density	Electrolyte	Reference
Cu-CeO _{2-x}	CH ₄	52.7%	-1.8 V vs.	24.2 mA	0.1 M	This work
			RHE	cm ⁻²	KHCO ₃	
Cu-CeO ₂ -4%	CH_4	58%	-1.8 V vs.	28 mA	0.1 M	1
			RHE	cm ⁻²	KHCO ₃	
Cu/CeO ₂ -R	СЦ	49.3%	-1.6 V vs.	16.8 mA	0.1 M	2
	$C\Pi_4$		RHE	cm ⁻²	KHCO ₃	
5-CuO/CeO ₂	СЦ	37.8%	-1.27 V vs.	22 mA	0.1 M	3
	$C\Pi_4$		RHE	cm ⁻²	KHCO ₃	
Cu/CeO ₂ CH ₄	CII	42%	-0.89 V vs.	51 mA	1 M KOH	4
	$C\Pi_4$		RHE	cm ⁻²		
Cu _{0.04} /CeO ₂ CH ₄	CII	4 58%	-1.3 V vs.	7 mA	0.1 M	5
	$C\Pi_4$		RHE	cm ⁻²	KHCO ₃	
Cu@ZnO	CH_4	52%	-1.4 V vs.	7 mA	0.1 M	6
			RHE	cm ⁻²	KHCO ₃	

Table S3 The performance of various Cu-MO_X catalysts for CO₂ electrochemical reduction

References

- 1. Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu and G. Zheng, Acs Catal., 2018, 8, 7113-7119.
- L. Xue, C. Zhang, J. Wu, Q.-Y. Fan, Y. Liu, Y. Wu, J. Li, H. Zhang, F. Liu and S. Zeng, *Appl. Catal. B-Environ.*, 2022, 304, 120951.
- 3. H. D. Cai, B. Nie, P. Guan, Y. S. Cheng, X. D. Xu, F. H. Wu, G. Yuan and X. W. Wei, ACS Appl. Nano Mater., 2022, 5, 7259-7267.
- 4. A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang, T.-K. Sham, C. Yang, Y. Ji, L. Qian, X. Xu and G. Zheng, ACS Energy Lett., 2020, 5, 1044-1053.
- 5. J. Yin, Z. Gao, F. Wei, C. Liu, J. Gong, J. Li, W. Li, L. Xiao, G. Wang, J. Lu and L. Zhuang, ACS Catal., 2022, **12**, 1004-1011.
- 6. W. J. Jang, H. M. Kim, J. O. Shim, S. Y. Yoo, K. W. Jeon, H. S. Na, Y. L. Lee, D. W. Jeong, J. W. Bae, I. W. Nah and H. S. Roh, *Green Chem.*, 2018, 20, 1621-1633.