Construction and characterization of an inorganic-organic hybrid copper(I) iodide coordination polymer with the semiconducting luminescence

Hui Yang,^{abcd} Xiaofei Kuang,^{*abcd} Ying-Hao Mi,^{ac} Ming-Ming Wang,^{ac} Yuqing Zhao,^{ad} Fulin Lin ^{ac} and Can-Zhong Lu^{*abcd}

 a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
E-mail: xfkuang@fjirsm.ac.cn, czlu@fjirsm.ac.cn

^{b.} College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

^c Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of

Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

^{*d.*} Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

Fig. S1. The ¹H NMR spectrum of Pytz in DMSO-d₆.

Fig. S2. (a) The asymmetric unit of CuI-Pytz. (b) The distorted tetrahedrons of CuI-Pytz. (c) and (d) The illustrion of the C-H... π and C-H...I interactions stabilizing the supramolecular structure.

Fig. S3. (a) 1D chain of CuI-Pytz. (b) 2D layer of CuI-Pytz. (c) 3D structure of CuI-Pytz.

Fig. S4. (a) FT-IR spectra of Pytz and CuI-Pytz. (b) The fine structure of IR spectra.

Fig. S5. The PL quantum yield (Φ_{PL}) of CuI-Pytz under 365 nm excitation light.

Fig. S6. Temperature and PL emission 2D contour mapping.

	.	<u> </u>	
Cu1—I1 ¹	2.6879(4)	$N3^{3}$ —Cu1—I1 ¹	117.04(8)
Cu1—I1 ²	2.6879(4)	N3—Cu1—I1 ¹	99.51(8)
Cu1—N3	2.042(3)	N3—Cu1—I1 ²	117.04(8)
Cu1—N3 ³	2.041(3)	N3 ³ —Cu1—N3	112.81(16)
Cu2—I1	2.5809(3)	I1 ¹ —Cu2—I1	132.67(3)
$Cu2-I1^{2}$	2.5809(3)	$N4^1$ —Cu2—I1	100.09(8)
Cu2—N4	2.059(3)	$N4^1$ —Cu2—I1 ¹	109.72(8)
Cu2—N4 ²	2.059(3)	N4—Cu2—I1	109.72(8)
$I1^{1}$ —Cu1—I1 ²	111.88(2)	N4—Cu2—I1 1	100.09(8)
$N3^3$ —Cu1—I1 ²	99.51(8)	N4—Cu2—N4 1	100.66(16)

Table S1. Selected bond lengths (Å) and bond angles (°) for CuI-Pytz.

Symmetry codes: ¹+X, +Y, 1+Z; ²1-X, +Y, 1-Z; ³1-X, +Y, 2-Z (Bond lengths).

¹1-X, +Y, 1-Z; ²+X, +Y, 1+Z; ³1-X, +Y, 2-Z; ⁴+X, +Y, -1+Z (Bond angles).

Temp (K)	\mathbf{A}_{1}	$\tau_1(\mu s)$	A_2	$\tau_2(\mu s)$	$ au_{ave}(\mu s)$
80	0.684 (50%)	24.500	0.684 (50%)	29.945	27.495
100	0.699 (50%)	21.439	0.699 (50%)	26.203	24.059
120	0.741 (50%)	17.902	0.741 (50%)	21.880	20.089
140	0.864 (50%)	14.059	0.864(50%)	17.183	15.777
160	0.982 (50%)	11.054	0.982(50%)	13.510	12.405
180	0.800 (50%)	9.880	0.800(50%)	12.075	11.087
200	0.290 (30.8%)	3.033	0.651 (69.2%)	7.382	6.709
220	0.340 (36.4%)	1.972	0.594 (63.6%)	5.587	4.980
240	0.386 (40.8%)	1.603	0.561 (59.2%)	4.431	3.868
260	0.403 (43.2%)	1.058	0.529 (56.8%)	3.219	2.786
280	0.367 (39.2%)	0.623	0.569 (60.8%)	2.141	1.901
300	0.379 (41.2%)	0.381	0.541 (58.8%)	1.310	1.153