Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Surfactant-controlled Switchable Oxygenation of Sulfides to Sulfoxides or Sulfones under Visible-light Irradiation

Rongnan Yi, Yan Wu *, Junhao Chen, Ting Wu, Jin-Yang Chen*

Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha 410138, China

E-mail: chenjinyang@hnu.edu.cn; wyan2018@163.com

Table of Content

1. General information	S2
2. Information for the photoreactor	
3. Experimental Section	S4
4. Characterization data of sulfoxides 2 and sulfones 3	S8
5. References	S20
6. ¹ H and ¹³ C NMR spectra of sulfoxides 2 and sulfones 3	S21

1. General Information

Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ¹H NMR spectra were recorded at 500 MHz, ¹³C NMR spectra were recorded at 126 MHz by using a Bruker Avance 500 spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.0 ppm), the chemical shifts (δ) were expressed in ppm, and J values were given in Hz. HRMS were performed on a spectrometer operating on ESI-TOF.

2. Information for the photoreactor

LED Test Report

Decident	Mark
Product	тагк

.....

Model: 2A494000-415nm (415.7) Temperature: 25°C Tester: admin Manufacture: Beijing rogertech Ltd Humidity: 65% Test Date: 2023-10-26,11:30:08

Name	Value	Name	Value	Name	Value	Name	Value
ESuv(mW/cm [*])	0.0001	SDCM	100.00	Peak Signal	53636		
Euvc(mW/c≡')	0.0000	Ra	-82.8	Dark Signal	3124		
Euvb(mW/cm*)	0.0000	Ee(mW/cm ²)	144.57433	Compensate level	2904		
Euva(mW/cm [*])	1.7754	S/P	51.306				
Euv(mW/cm*)	1.78	Dominant(nm)	426.10				
Eb(mW/cm*)	134.03	Purity(%)	99.9				
Eg(mW/cm*)	0.00	HalfWidth(nm)	13.5				
Er(mW/cm*)	0.00	Peak(nm)	415.7				
Eir(mW/cm*)	9.30	Center(nm)	416.1				
E(lx)	4025.03	Centroid(nm)	444.2				
Candle E(fc)	373.93	Color Ratio(RGB)	0.0,0.0,100.0				
CCT(K)	100000	CIE1931 X	161929.688				
Duv	-0.12865	CIE1931 Y	5893.156				
CIE x,y	0.1701,0.0062	CIE1931 Z	784093.125				
CIE u,v	0.2489,0.0136	TLCI-2012	0				
CIE u',v'	0.2489,0.0204	Integral Time(ms)	0.1				
Spectrogram					CIE1931		
0.8 - 0.6 - 0.4 -		/			0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7		
230 292	354 416	478 540	602 664	726 788	850 0.0 0.1	0.2 0.3 0.4 0	.5 0.6 0.7 0.8x

Figure S1. The visible-light irradiation instrument and the spectrum of our lamp

3. Experimental Section

3.1 General experimental procedures for sulfoxides 2

In a 10 mL Schlenk with a stirring bar, sulfides **1** (0.2 mmol, 0.2 mmol/mL) and Me- β -CD (0.1 g/mL) were dissolved in H₂O (1 mL). The mixture was stirred at 25 °C with 10 W LED (415 nm) irradiation for 12 h. After the reaction was completed, the reaction mixture was diluted and extracted by ethyl acetate (10 mL x 3). The combined organic layer was dried over Na₂SO_{4 AND} evaporated under vacuum. The residue was purified by silica gel chromatography (petroleum ether/ethyl acetate) to afford the desired sulfoxides **2**.

3.2 General experimental procedures for sulfones 3

Ar
$$\stackrel{\mathbf{S}}{\xrightarrow{\mathbf{S}}}$$
 R $\stackrel{\mathbf{O}_2 \text{ balloon}}{\underline{\mathbf{SDBS}}}$ $\stackrel{\mathbf{O}}{\underbrace{\mathbf{SDBS}}}$ $\operatorname{Ar} \stackrel{\mathbf{O}}{\underset{\mathbf{H}_2 \text{O}, \text{ r.t., 36 h}}{\overset{\mathbf{O}}{\operatorname{H}}}}$ $\operatorname{Ar} \stackrel{\mathbf{O}}{\underset{\mathbf{O}}{\overset{\mathbf{O}}{\operatorname{H}}}}$ $\operatorname{Ar} \stackrel{\mathbf{O}}{\underset{\mathbf{O}}{\overset{\mathbf{O}}{\operatorname{H}}}}$

In a 10 mL Schlenk with a stirring bar, sulfides **1** (0.2 mmol, 0.2 mmol/mL) and SDBS (0.1 g/mL) were dissolved in H₂O (1 mL). The mixture was stirred at 25 $\$ with 10 W LED (415 nm) irradiation for 36 h. After the reaction was completed, the reaction mixture was diluted and extracted by ethyl acetate (10 mL x 3). The combined organic layer was dried over Na₂SO_{4 AND} evaporated under vacuum. The residue was purified by silica gel chromatography (petroleum ether/ethyl acetate) to afford the desired sulfones **3**.

3.3 Control Experiments.

Figure S2. Time course for the conversion of methylphenyl sulfide 1a.

Figure S3. a) EPR Experiment for sulfoxides 2a; b) EPR Experiment for sulfones 3a; c) On-off Experiment for sulfoxides 2a; d) On-off Experiment for sulfones 3a.

Figure S4. The UV-vis absorption spectra of 1a, Me- β -CD or the mixture of 1a and Me- β -CD in ethanol (0.01 M).

4. Characterization data of sulfoxides 2 and sulfones 3

(*methylsulfinyl*)*benzene* (**2a**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 7.6 Hz, 2H), 7.53-7.45 (m, 3H), 2.69 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.69, 131.04, 129.36, 123.49, 43.95.

1-methyl-4-(methylsulfinyl)benzene (**2b**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 2.71 (s, 3H), 2.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.53, 141.56, 130.07, 123.58, 44.08, 21.43.

1-methoxy-4-(methylsulfinyl)benzene (**2c**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 3.86 (s, 3H), 2.70 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.99, 136.63, 125.48, 114.87, 55.56, 44.04.

1-(methylsulfinyl)-4-(trifluoromethoxy)benzene (**2d**)^[2]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 2.73 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 151.10 (d, *J* = 1.83 Hz), 144.15, 125.43, 121.77, 120.32 (q, *J* = 257.5 Hz), 44.07.

1-fluoro-4-(methylsulfinyl)benzene (**2e**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (dd, *J* = 8.5, 5.1 Hz, 2H), 7.24 (dd, *J* = 15.0, 6.6 Hz, 2H), 2.72 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 164.47 (d, *J* = 250 Hz), 141.46, 125.99 (d, *J* = 8.75 Hz), 116.86 (d, *J* = 21.25 Hz), 44.39.

1-chloro-4-(methylsulfinyl)benzene (**2f**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 2.52 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.28, 137.28, 129.69, 124.99, 44.12.

1-bromo-4-(methylsulfinyl)benzene (**2g**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.87, 132.61, 125.49, 125.16, 44.02.

1-iodo-4-(methylsulfinyl)benzene (**2h**)^[3]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* = 7.0 Hz, 2H), 2.72 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.71, 138.49, 125.16, 97.40, 43.99.

4-(*methylsulfinyl*)*benzoic acid* (**2i**) ^[4]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.9 Hz, 2H), 2.53 (s, 3H), 1.25 (s, 1H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 171.41, 146.89, 130.61, 125.34, 125.01, 14.89.

1-(4-(methylsulfinyl)phenyl)ethan-1-one (**2j**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.3 Hz, 2H), 2.76 (s, 3H), 2.66 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 197.08, 150.92, 139.09, 129.18, 123.77, 43.84, 26.83.

4-(methylsulfinyl)benzonitrile (**2k**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 2.76 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 151.53, 133.14, 124.44, 117.83, 114.96, 43.92.

1-(methylsulfinyl)-4-nitrobenzene (**21**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.40 (d, *J* = 8.8 Hz, 2H), 7.84 (d, *J* = 8.4 Hz, 2H), 2.79 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 153.25, 149.52, 124.68, 124.53, 43.91.

1-methyl-2-(methylsulfinyl)benzene (**2m**) ^[5]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 2.69 (s, 3H), 2.38 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.97, 133.95, 130.77, 130.66, 127.46, 123.00, 42.08, 18.07.

1-methyl-3-(methylsulfinyl)benzene (**2n**) ^[5]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 (s, 1H), 7.41 -7.37 (m, 2H), 7.29 (dt, *J* = 3.6, 2.2 Hz, 1H), 2.70 (s, 3H), 2.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 145.60, 139.72, 131.95, 129.25, 123.85, 120.69, 44.03, 21.53.

1-chloro-2-(methylsulfinyl)benzene (**2o**) ^[4]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 6.8 Hz, 1H), 2.80 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.61, 131.99, 129.78, 128.17, 125.32, 125.05, 41.66.

1-chloro-3-(methylsulfinyl)benzene (**2p**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.51 -7.41 (m, 3H), 2.71 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 147.87, 135.71, 131.19, 130.60, 123.63, 121.62, 44.03.

(*ethylsulfinyl*)*benzene* (**2q**) ^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 7.3 Hz, 2H), 7.52-7.46 (m, 3H), 2.92-2.85 (m, 1H), 2.79-2.71 (m, 1H), 1.18 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.38, 131.02, 129.23, 124.27, 50.38, 6.05.

(*cyclopropylsulfinyl*)*benzene* (**2r**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.56-7.47 (m, 3H), 2.29-2.24 (m, 1H), 1.27-1.22 (m, 1H), 1.07-1.00 (m, 1H), 1.00-0.90 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.99, 131.07, 129.30, 124.15, 33.96, 3.55, 2.98.

((2-methylbutyl)sulfinyl)benzene (**2s**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 (d, J = 5.6 Hz, 2H), 7.54-7.45 (m, 3H), 2.88 (dd, J = 13.0, 4.0 Hz, 0.5H), 2.78 (dd, J = 13.1, 5.9 Hz, 0.5H), 2.60 (dd, J = 13.1, 7.9 Hz, 0.5H), 2.44-2.37 (m, 1H), 2.08-1.93 (m, 1H), 1.68 (dt, J = 13.3, 6.3 Hz, 1H), 1.43 (dq, J = 14.1, 7.0 Hz, 0.5H), 1.38-1.27 (m, 1H), 1.15 (d, J = 6.6 Hz, 1.5H), 1.04 (d, J = 6.8 Hz, 1.5H), 0.90 (q, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.94, 144.86, 131.08, 130.98, 129.37, 124.10, 123.97, 66.23, 65.97, 30.38, 30.22, 29.76, 28.59, 19.51, 18.70, 11.14, 10.91.

(isopropylsulfinyl)benzene (**2t**) ^[6]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.54-7.45 (m, 3H), 2.82 (hept, *J* = 6.9 Hz, 1H), 1.22 (d, *J* = 6.9 Hz, 3H), 1.13 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 141.76, 130.97, 128.88, 125.01, 54.55, 15.87, 13.94.

((cyclopropylmethyl)sulfinyl)benzene (**2u**) ^[7]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.66 (d, J = 5.7 Hz, 2H), 7.54-7.50 (m, 3H), 2.86 (dd, J = 13.2, 7.0 Hz, 1H), 2.68 (t, J = 10.5 Hz, 1H), 1.01-0.96 (m, 1H), 0.63 (d, J = 8.3 Hz, 2H), 0.27 (dd, J = 9.9, 4.9 Hz, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.00, 131.13, 129.22, 124.32, 63.38, 5.27, 4.94, 4.80.

((cyclohexylmethyl)sulfinyl)benzene (**2v**)^[8]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.65-7.60 (m, 2H), 7.54-7.45 (m, 3H), 2.79 (dd, *J* = 13.0, 4.7 Hz, 1H), 2.48 (dd, *J* = 13.1, 9.3 Hz, 1H), 2.10 (dt, *J* = 13.0, 3.1 Hz, 1H), 1.99-1.90 (m, 1H), 1.77-1.65 (m, 4H), 1.36-1.25 (m, 2H), 1.21-1.15 (m, 1H), 1.12-1.04 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.72, 130.88, 129.23, 123.85, 66.26, 33.40, 33.00, 32.22, 26.00, 25.91, 25.60.

(*allylsulfinyl*)*benzene* (**2w**) ^[9]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43-7.37 (m, 2H), 7.34-7.28 (m, 3H), 5.48-5.40 (m, 1H), 5.13 (d, *J* = 10.1 Hz, 1H), 4.99 (dd, *J* = 17.0, 1.4 Hz, 1H), 3.40-3.28 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 143.00, 131.26, 129.19, 125.36, 124.49, 124.07, 60.98.

(benzylsulfinyl)benzene (**2x**) ^[9]: ¹H NMR (500 MHz, DMSO- d_6) δ 7.56-7.48 (m, 5H), 7.31-7.23 (m, 3H), 7.11-7.05 (m, 2H), 4.25 (d, J = 12.8 Hz, 1H), 4.06 (d, J = 12.8 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 143.38, 130.89, 130.41, 130.40, 128.92, 128.12, 127.84, 124.31, 61.59.

2-(*methylsulfinyl*)*benzo*[*d*]*thiazole* (**2y**) ^[10]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 8.2 Hz, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 3.09 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 178.44, 153.81, 136.04, 127.03, 126.31, 124.02, 122.37, 43.21.

2-(*methylsulfinyl*)*pyridine* (**2z**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.59 (d, *J* = 4.0 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.94-7.91 (m, 1H), 7.40-7.33 (m, 1H), 2.82 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.86, 149.56, 138.16, 124.64, 119.26, 41.28.

(*methylsulfonyl*)*benzene* (**3a**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 6.9 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 2H), 3.05 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.70, 133.83, 129.49, 127.46, 44.61.

1-methyl-4-(methylsulfonyl)benzene (**3b**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 3.03 (s, 3H), 2.44 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.79, 137.84, 130.07, 127.49, 44.73, 21.73.

1-methoxy-4-(methylsulfonyl)benzene (**3c**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.6 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 3.66 (d, *J* = 1.2 Hz, 3H), 2.80 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.79, 132.37, 129.62, 114.60, 55.80, 44.93.

1-(methylsulfonyl)-4-(trifluoromethoxy)benzene $(3d)^{[2]}$: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.8 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 3.07 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 153.01 (d, J = 2.5 Hz), 138.82, 129.76, 121.20, 120.20 (q, J = 257.5 Hz), 44.56.

1-fluoro-4-(methylsulfonyl)benzene (**3e**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 (dd, *J* = 8.5, 5.1 Hz, 2H), 7.25 (t, *J* = 8.5 Hz, 2H), 3.05 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 165.80 (d, *J* = 256.4 Hz), 136.68 (d, *J* = 3.2 Hz), 130.30 (d, *J* = 9.6 Hz), 116.69 (d, *J* = 22.6 Hz), 44.67.

1-chloro-4-(methylsulfonyl)benzene (**3f**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 3.05 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.55, 139.09, 129.81, 129.02, 44.63.

1-bromo-4-(methylsulfonyl)benzene (**3g**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 8.4 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 3.06 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 150.98, 146.05, 129.10, 124.77, 44.41.

1-iodo-4-(methylsulfonyl)benzene (**3h**) ^[3]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 7.3 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 3.04 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.25, 138.77, 128.87, 101.70, 44.57.

I-(4-(methylsulfonyl)phenyl)ethan-1-one (**3j**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.1 Hz, 2H), 8.04 (d, *J* = 8.3 Hz, 2H), 3.08 (s, 3H), 2.66 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.79, 144.31, 141.04, 129.27, 127.94, 44.44, 27.06.

4-(methylsulfonyl)benzonitrile (**3k**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 7.9 Hz, 2H), 7.89 (d, *J* = 7.9 Hz, 2H), 3.09 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 144.56, 133.33, 128.32, 117.71, 117.17, 44.34.

1-methyl-2-(methylsulfonyl)benzene (**3m**)^[5]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 7.9 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 3.29 (s, 3H), 2.93 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.83, 137.67, 133.81, 132.84, 129.37, 126.86, 43.79, 20.39.

1-methyl-3-(methylsulfonyl)benzene (**3n**)^[5]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.93-7.86 (m, 2H), 7.64-7.57 (m, 2H), 3.20 (s, 3H), 2.59 (d, *J* = 3.4 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.37, 139.64, 134.47, 129.24, 127.57, 124.35, 44.42, 21.28.

1-chloro-2-(methylsulfonyl)benzene (**30**) ^[4]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.34 (d, *J* = 7.9 Hz, 1H), 7.82-7.73 (m, 2H), 7.69-7.66 (m, 1H), 3.47 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.98, 134.90, 132.55, 131.96, 130.83, 127.60, 42.79.

1-chloro-3-(methylsulfonyl)benzene (**3p**) ^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.84 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.43 (t, *J* = 7.9 Hz, 1H), 2.98 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.22, 135.68, 133.97, 130.80, 127.65, 125.57, 44.50.

(*ethylsulfonyl*)*benzene* (**3q**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 3.10 (q, *J* = 7.4 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.49, 133.70, 129.27, 128.18, 50.58, 7.43.

(*cyclopropylsulfonyl*)*benzene* (**3r**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.84 (t, *J* = 7.4 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 2H), 2.66 (tt, *J* = 8.5, 4.9 Hz, 1H), 1.58-1.51 (m, 2H), 1.26-1.19 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.81, 133.48, 129.34, 127.66, 33.02, 6.08.

((2-methylbutyl)sulfonyl)benzene (**3s**)^[1]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.7 Hz, 2H), 7.67-7.60 (m, 1H), 7.55 (t, *J* = 7.2 Hz, 2H), 3.07 (dd, *J* = 14.1, 4.7 Hz, 1H), 2.91 (dd, *J* = 14.2, 7.8, 1H), 2.07-1.96 (m, 1H), 1.51-1.39 (m, 1H), 1.28 (dp, *J* = 14.7, 7.5 Hz, 1H), 1.04 (dd, *J* = 6.7, 1.6 Hz, 3H), 0.82 (td, *J* = 7.3, 1.5 Hz, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.21, 133.53, 129.27, 127.83, 62.26, 30.03, 29.40, 19.38, 10.71.

(isopropylsulfonyl)benzene (**3t**)^[6]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 7.8 Hz, 2H), 7.64-7.59 (m, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 3.16 (p, *J* = 6.8 Hz, 1H), 1.24 (dd, *J* = 7.0, 1.6 Hz, 6H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 136.85, 133.59, 129.02, 128.89, 55.42, 15.58.

((*cyclopropylmethyl*)*sulfonyl*)*benzene* (**3u**) ^[7]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.92-7.83 (m, 2H), 7.60 (dd, *J* = 8.4, 6.5 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 2.97 (d, *J* = 7.3 Hz, 2H), 0.93-0.89 (m,

1H), 0.56-0.42 (m, 2H), 0.11-0.02 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 139.22, 133.65, 129.12, 128.33, 61.25, 4.80, 4.32.

((cyclohexylmethyl)sulfonyl)benzene (**3v**)^[11]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 2.98 (d, *J* = 6.2 Hz, 2H), 2.02-1.95 (m, 1H), 1.86 (dd, *J* = 13.3, 3.8 Hz, 2H), 1.70-1.60 (m, 3H), 1.31-1.21 (m, 2H), 1.18-1.11 (m, 1H), 1.10-1.01 (m, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 140.51, 133.63, 129.39, 127.89, 63.05, 33.28, 32.93, 25.90, 25.85.

(allylsulfonyl)benzene (**3w**) ^[9]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.91-7.82 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 5.85-5.72 (m, 1H), 5.32 (d, *J* = 10.1 Hz, 1H), 5.14 (d, *J* = 17.1 Hz, 1H), 3.80 (d, *J* = 7.4 Hz, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 138.35, 133.89, 129.17, 128.59, 124.87, 124.72, 60.97.

(*benzylsulfonyl*)*benzene* (**3x**) ^[9]: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.63 (dd, *J* = 16.4, 7.7 Hz, 3H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 6.5 Hz, 2H), 7.09 (d, *J* = 7.5 Hz, 2H), 4.33 (s, 2H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 137.94, 133.85, 130.95, 129.01, 128.91, 128.78, 128.72, 128.22, 63.02.

2-(*methylsulfonyl*)*benzo*[*d*]*thiazole* (**3y**) ^[12]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.2 Hz, 1H), 8.06-8.00 (m, 1H), 7.68-7.58 (m, 2H), 3.42 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 166.36, 152.44, 136.60, 128.12, 127.73, 125.41, 122.40, 42.44.

2-(*methylsulfonyl*)*pyridine* (**3z**) ^[13]: ¹H NMR (500 MHz, Chloroform-*d*) δ 8.72 (d, *J* = 3.1 Hz, 1H), 8.08 (d, *J* = 7.7 Hz, 1H), 7.97 (t, *J* = 7.8 Hz, 1H), 7.59-7.53 (m, 1H), 3.22 (s, 3H); ¹³C NMR (126 MHz, Chloroform-*d*) δ 158.13, 150.18, 138.40, 127.57, 121.18, 40.12.

5. References

- [1] K.-J. Liu, J.-H. Deng, J. Yang, S.-F. Gong, Y.-W. Lin, J.-Y. He, Z. Cao, W.-M. He, *Green Chem.*, **2020**, 22, 433-438.
- [2] M. Jakubczyk, S. Mkrtchyan, M. Shkoor, S. Lanka, S. Budzak, M. Ilias, M. Skorsepa, V.
- O. Iaroshenko, J. Am. Chem. Soc., 2022, 144, 10438-10445.
- [3] F. Huang, Y. Wang, X. Dong, X. Lang, Sci. China: Chem., 2023, 66, 3290-3296.
- [4] Z. Cheng, P. Sun, A. Tang, W. Jin, C. Liu, Org. Lett., 2019, 21, 8925-8929
- [5] K.-J. Liu, Z. Wang, L.-H. Lu, J.-Y. Chen, F. Zeng, Y.-W. Lin, Z. Cao, X. Yu, W.-M. He, *Green Chem.*, **2021**, 23, 496-500.
- [6] J. K. Park, S. Lee, J. Org. Chem., 2021, 86, 13790-13799.
- [7] C. Gu, Z. Wang, R. Shi, Chem. Comm., 2023, 59, 6889-6892.
- [8] K. E. Cantwell, P. E. Fanwick, M. M. Abu-Omar, ACS Omega, 2017, 2, 1778-1785.
- [9] S. Mirfakhraei, M. Hekmati, F. H. Eshbalab, H. Veisi, *New J. Chem.*, **2018**, 42, 1757-1761.
- [10] S.-S. Zhu, L. Zuo, Y. Liu, B. Yu, Green Chem., 2022, 24, 8725-8732.
- [11] L. Liu, J. A. Henderson, A. Yamamoto, P. Bremond, Y. Kishi, *Org. Lett.*, **2012**, 14, 2262-2265.
- [12] J. Xu, L. Liu, Z.-C. Yan, Y. Liu, L. Qin, N. Deng, H.-J. Xu, Green Chem., 2023, 25, 2268-2273.
- [13] X. Li, Y. Wang, L. Yang, Z. Zhang, X. Xie, *Tetrahedron*, 2022, 110, 132708.

6. ¹H and ¹³C NMR spectra of sulfoxides 2 and sulfones 3

¹³C NMR of compound **2a**

¹³C NMR of compound **2b**

¹³C NMR of compound **2c**

¹³C NMR of compound **2d**

¹³C NMR of compound **2e**

¹³C NMR of compound **2f**

¹³C NMR of compound **2h**

¹³C NMR of compound **2i**

¹³C NMR of compound **2**l

S35

S36

S47

¹³C NMR of compound **3b**

¹³C NMR of compound **3c**

¹³C NMR of compound **3d**

¹³C NMR of compound **3e**

S57

¹³C NMR of compound **3**q

S62

¹³C NMR of compound **3**x

