Supplementary Information for:

Crystal Structure, Semiconducting and Photoluminescence (PL) Properties in Hybrid Tin Perovskites-Like Materials: [Cl-(CH₂)₂-NH₃]₂SnCl₆ and [Cl-(CH₂)₂-NH₃]₂SnBr_{5.65}Cl_{0.35}

Amal Elghoul, ^a Fadhel Hajlaoui, ^{a*} Karim Karoui, ^{b, c} Magali Allain, ^d Nicolas Mercier, ^d Erika Kozma, ^e Chiara Botta, ^e Nabil Zouari ^a

^a Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Université de Sfax, Tunisia

^b Laboratoire des caractérisations spectroscopiques et optique des matériaux, Faculté des Sciences de Sfax, B.P. 1171, 3000 Sfax, Université de Sfax, Tunisia

^c GREMAN UMR, 7347-CNRS, CEA, INSACVL, Université de Tours, Blois, France

^d MOLTECH Anjou, UMR-CNRS 6200, Univ Angers, 2 Bd Lavoisier, 49045 Angers, France.

^e Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), CNR. Via A. Corti 12, 20133 Milano, Italy.

*Corresponding Authors' E-mail:

Table of Content:

Table S1. Crystal data for [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1) and [Cl-(CH₂)₂-NH₃]₂SnBr_{5.65}Cl_{0.35} (2)

Table S2. Selected bond lengths (Å) and angles (°) for [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1).

Table S3. Selected bond lengths (Å) and angles (°) for $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2).

Table S4. Hydrogen-bonding geometry (Å, °) for [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1).

Table S5. Hydrogen-bonding geometry (Å, °) for [Cl-(CH₂)₂-NH₃]₂SnBr_{5.65}Cl_{0.35} (2)

Figure S1. IR spectrum of $[Cl-(CH_2)_2-NH_3]_2SnCl_6(1)$

Figure S2. IR spectrum of [Cl-(CH₂)₂-NH₃]₂SnBr_{5.65}Cl_{0.35} (2)

Figure S3. DSC heating curves for compounds [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1) (a) and [Cl-

 $(CH_2)_2$ -NH₃]₂SnBr_{5.65}Cl_{0.35} (2) (b).

Figure S4. PL and PL excitation spectra of $[Cl-(CH_2)_2-NH_3]_2SnCl_6(1)$ crystals ($\lambda_{exc}=350$ nm, blue solid line; $\lambda_{exc}=450$ nm, green solid line; $\lambda_{em}=435$ nm, blue dashed line; $\lambda_{em}=525$ nm, green dashed line)

Figure S5. PL (λ_{exc} =350nm, blue line; λ_{exc} =450nm, green line) spectra of [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1) cast film from Ethanol

Figure S6. Normalized PL and PL excitation spectra of $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) crystalline powders. $\lambda_{ex} = 350$ nm, blue line $\lambda_{ex} = 450$ nm, green line; $\lambda_{em} = 475$ nm, blue dashed line; $\lambda_{em} = 560$ nm, green dashed line.

Figure S7. Images $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) crystals taken with optical and fluorescence microscopy. From the left to the right: cross polarized optical image; fluorescence image, UV light excitation. Scale bar is $30\mu m$.

Figure S8. Normalized photoluminescence (PL) spectrum of $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) cast films from water solution; $\lambda_{ex} = 350$ nm.

Compound name	$(C_4H_{14}N_2Cl_2)SnCl_6$ (1)	$(C_4H_{14}N_2Cl_2)SnBr_{5.65}Cl_{0.35}$ (2)
Empirical formula	$C_4H_{14}N_2Cl_8Sn$	$C_4H_{14}N_2Cl_2Br_{5.65}Cl_{0.35}Sn$
Color	Colorless	Colorless
Formula weight (g.mol ⁻¹)	492.46	743.66
Temperature (K)	293	293
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/m$	$P2_1/m$
<i>a</i> (Å)	10.1028(7)	10.3622(3)
<i>b</i> (Å)	7.1224(5)	7.4473 (2)
<i>c</i> (Å)	11.7984 (7)	12.3099 (3)
α, β, γ (°)	90, 108.009(7), 90	90, 109.176(3), 90
$V(Å^3)$	807.37(10)	897.25
Z	2	2
$\rho_{\text{calc}}, (g.\text{cm}^{-3})$	2.026	2.753
Absorption correction	Gaussian	Gaussian
Radiation (Å)	CuKa (1.54184)	CuKa (1.54184)
μ (mm ⁻¹)	24.58	29.12
Crystal Shape	Prism	Prism
Crystal size	$0.30 \times 0.17 \times 0.11$	$0.26 \times 0.16 \times 0.10$
F (000)	476	679
θ range [°]	3.9 to 76.2	3.7 to 76.0
Collected reflections	6361	13853
R _{int}	0.054	0.102
Data/restrains/parameters	1747/7/110	1881/41/136
$\mathbf{R}_1, \mathbf{w}\mathbf{R}_2 \left[\mathbf{I} > 2\sigma(\mathbf{I})\right]$	0.0435, 0.1311	0.044, 0.1183
R ₁ , wR ₂ [all data]	0.0442, 0.1335	0.045, 0.1197
Goodness-of-fit on F ²	1.163	1.061
Largest diff. peak/hole/e. Å ⁻³	0.67/-1.46	1.18/-0.75

Sn1—Cl1	2.4322 (15)	C1—C2	1.463 (19)
Sn1—Cl2	2.4289 (11)	C1—N1	1.488 (12)
Sn1—Cl3	2.4068 (12)	C2—C15	1.765 (11)
Sn1—Cl4	2.4298 (15)	C3—N2	1.455 (9)
Cl3—Sn1—Cl3 ⁱ	92.11 (7)	C3—C4	1.502 (14)
Cl3—Sn1—Cl2 ⁱ	88.77 (5)	C4—Cl6B	1.706 (18)
Cl3 ⁱ —Sn1—Cl2 ⁱ	178.78 (4)	C4—Cl6A	1.800 (18)
Cl3—Sn1—Cl2	178.78 (4)	C2-C1-N1	111.9 (13)
Cl3 ⁱ —Sn1—Cl2	88.77 (5)	C1—C2—Cl5	109.4 (10)
Cl2 ⁱ —Sn1—Cl2	90.33 (6)	N2—C3—C4	111.2 (7)
Cl3—Sn1—Cl4	90.88 (4)	C3—C4—C16B	115.0 (10)
Cl3 ⁱ —Sn1—Cl4	90.88 (4)	C3—C4—Cl6A	98.1 (17)
Cl2 ⁱ —Sn1—Cl4	89.95 (4)		
Cl2—Sn1—Cl4	89.95 (4)		
Cl3—Sn1—Cl1	89.61 (4)		
Cl3 ⁱ —Sn1—Cl1	89.61 (4)		
Cl2 ⁱ —Sn1—Cl1	89.55 (4)		
Cl2—Sn1—Cl1	89.55 (4)		
Cl4—Sn1—Cl1	179.29 (5)		

Table S2. Selected bond lengths (Å) and angles (°) for $[Cl-(CH_2)_2-NH_3]_2SnCl_6(1)$.

Symmetry codes: (i) x, -y+1/2, z.

Sn1—Cl3 ⁱ	2.463 (17)	Br3—Sn1—Br2 ⁱ	88.47 (8)
Sn1—Cl3	2.463 (17)	Br2—Sn1—Br2 ⁱ	90.78 (16)
Sn1—Br3 ⁱ	2.5678 (6)	Cl3 ⁱ —Sn1—Br1	90.1 (7)
Sn1—Br3	2.5678 (6)	Cl3—Sn1—Br1	90.1 (7)
Sn1—Br2	2.588 (2)	Br3 ⁱ —Sn1—Br1	89.94 (2)
Sn1—Br2 ⁱ	2.588 (2)	Br3—Sn1—Br1	89.94 (2)
Sn1—Br1	2.5989 (8)	Br2—Sn1—Br1	89.23 (5)
Sn1—Br4	2.6039 (8)	Br2 ⁱ —Sn1—Br1	89.23 (5)
Cl3 ⁱ —Sn1—Cl3	81.4 (16)	Cl3 ⁱ —Sn1—Br4	88.9 (7)
Cl3 ⁱ —Sn1—Br3 ⁱ	174.6 (8)	Cl3—Sn1—Br4	88.9 (7)
Cl3—Sn1—Br3 ⁱ	93.2 (8)	Br3 ⁱ —Sn1—Br4	90.99 (2)
Cl3 ⁱ —Sn1—Br3	93.2 (8)	Br3—Sn1—Br4	90.99 (2)
Cl3—Sn1—Br3	174.6 (8)	Br2—Sn1—Br4	89.83 (5)
Br3 ⁱ —Sn1—Br3	92.26 (3)	Br2 ⁱ —Sn1—Br4	89.83 (5)
Cl3 ⁱ —Sn1—Br2	86.1 (7)	Br1—Sn1—Br4	178.66 (3)
Br3 ⁱ —Sn1—Br2	88.47 (8)	C1—N1	1.468 (15)
Br3—Sn1—Br2	178.89 (6)	C1—C2A	1.470 (17)
Cl3—Sn1—Br2 ⁱ	86.1 (7)	C1—C2B	1.54 (2)
Br3 ⁱ —Sn1—Br2 ⁱ	178.89 (6)	C2A—Cl1A	1.769 (19)
C3—C4	1.454 (17)	C2B—C11B	1.77 (3)
C4—Cl2B	1.779 (14)	C3—N2	1.446 (11)
C4—Cl2A	1.87 (5)	N1—C1—C2A	117.3 (12)
		N1—C1—C2B	129 (10)
		C1—C2A—C11A	109.7 (12)
		C1—C2B—C11B	94 (2)
		N2—C3—C4	113.3 (9)
		C3—C4—Cl2B	115.2 (11)
		C3—C4—Cl2A	99 (2)

 $\textbf{Table S3}. Selected bond lengths (Å) and angles (°) for [Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35} (2).$

Symmetry codes: (i) x, -y+1/2, z.

D —Н···A	D —Н	H···A	D ····A	D —H…A
$C2$ — $H2E$ ···· $Cl2^{i}$	0.97	2.93	3.489 (12)	118
C4—H4 <i>B</i> ····Cl3 ⁱⁱ	0.97	2.90	3.748 (10)	147
C4—H4 C ···Cl4 ⁱⁱⁱ	0.97	2.93	3.734 (12)	141
C4—H4 <i>B</i> ····Cl3 ⁱⁱ	0.97	2.90	3.748 (10)	147
C4—H4 D ···Cl4 ^{iv}	0.97	2.98	3.822 (12)	146
N1— $H1C$ ···Cl2 ^v	0.89	2.64	3.474 (6)	156
N1—H1 D ···Cl1 ^{vi}	0.89	2.69	3.5774 (7)	174
N1—H1 <i>E</i> ····Cl1	0.89	2.66	3.367 (6)	137
N1—H1 E ····Cl3 ^{vii}	0.89	2.92	3.649 (6)	140
N2—H2 A ···Cl2 ^{vii}	0.89	2.71	3.349 (5)	130
N2—H2A····Cl3	0.89	2.89	3.681 (6)	149
N2—H2 B ····Cl2 ⁱⁱⁱ	0.89	2.76	3.349 (5)	125
N2—H2 B ····Cl2 ^{viii}	0.89	2.90	3.449 (6)	122
N2—H2 B ····Cl4 ⁱⁱⁱ	0.89	2.80	3.5778 (7)	147
N2—H2 C ···Cl2 ^{ix}	0.89	2.59	3.449 (6)	164

Table S4. Hydrogen-bonding geometry (Å, °) for $[Cl-(CH_2)_2-NH_3]_2SnCl_6$ (1).

Symmetry codes: (i) -x+1, y+1/2, -z; (ii) -x+2, y+1/2, -z+1; (iii) x, y+1, z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z; (vii) x, -y+1/2, z; (viii) -x+1, -y+1, -z+1; (ix) -x+1, y+1/2, -z+1.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	Н…А	D ····A	D —H…A
N1—H1 E ···Br2 ⁱ	0.89	2.72	3.587 (7)	165
N1—H1 E ···Cl3 ⁱ	0.89	2.90	3.77 (3)	164
N1—H1F···Br1 ⁱⁱ	0.89	2.89	3.7443 (8)	162
N1—H1 G ···Br1 ⁱⁱⁱ	0.89	2.82	3.478 (8)	132
N1—H1 G ···Br3 ^{iv}	0.89	3.10	3.861 (6)	145
$C2A$ — $H2B$ ···Br 2^{i}	0.97	3.13	3.97 (2)	146
C4—H4 B ···Br3 ^v	0.97	2.85	3.706 (13)	147
C4—H4 C ···Br4 ^{vi}	0.97	3.00	3.829 (15)	144
C4—H4 B ····Br3 ^v	0.97	2.85	3.706 (13)	147
C4—H4 D ···Br4 ^{vii}	0.97	3.13	3.941 (15)	142
N2—H2 E ···Br2 ^{viii}	0.89	2.83	3.467 (6)	130
N2—H2 <i>E</i> ···Br3	0.89	3.08	3.866 (7)	149
N2—H2 E ···Cl3 ^{viii}	0.89	2.96	3.59 (3)	129
N2—H2 F ···Br2 ^{vi}	0.89	2.88	3.467 (6)	125
N2—H2 F ···Br2 ⁱⁱ	0.89	3.03	3.593 (8)	123
N2—H2 F ···Br4 ^{vi}	0.89	2.97	3.7449 (8)	146
N2—H2 F ···Cl3 ^{vi}	0.89	2.96	3.59 (3)	129
N2—H2 F ···Cl3 ⁱⁱ	0.89	2.90	3.42 (3)	120
N2—H2 G ···Br2 ^{ix}	0.89	2.73	3.593 (8)	165
N2—H2 G ···Cl3 ^{ix}	0.89	2.56	3.42 (3)	163

Table S5. Hydrogen-bonding geometry (Å, °) for $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}(2)$

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1; (iv) x, -y+1/2, z+1; (v) -x+2, y+1/2, -z+1; (vi) x, y+1, z; (vii) -x+2, -y+1, -z+1; (viii) x, -y+1/2, z; (ix) -x+1, y+1/2, -z+1.

Figure S1. IR spectrum of [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1)

Figure S2. IR spectrum of [Cl-(CH₂)₂-NH₃]₂SnBr_{5.65}Cl_{0.35} (2).

Figure S3. DSC heating and cooling curves for compounds $[Cl-(CH_2)_2-NH_3]_2SnCl_6(1)$ (a) and $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}(2)$ (b).

Figure S4. PL and PL excitation spectra of $[Cl-(CH_2)_2-NH_3]_2SnCl_6$ (1) crystals (λ_{exc} =350nm, blue solid line; λ_{exc} =450nm, green solid line; λ_{em} =435 nm, blue dashed line; λ_{em} =525nm, green dashed line)

Figure S5. PL (λ_{exc} =350nm, blue line; λ_{exc} =450nm, green line) spectra of [Cl-(CH₂)₂-NH₃]₂SnCl₆ (1) cast film from Ethanol

Figure S6. Normalized PL and PL excitation spectra of $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) crystalline powders. $\lambda_{ex} = 350$ nm, blue line $\lambda_{ex} = 450$ nm, green line; $\lambda_{em} = 475$ nm, blue dashed line; $\lambda_{em} = 560$ nm, green dashed line.

Figure S7. Images $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) crystals taken with optical and fluorescence microscopy. From the left to the right: cross polarized optical image; fluorescence image, UV light excitation. Scale bar is $30\mu m$.

Figure S8. Normalized photoluminescence (PL) spectrum of $[Cl-(CH_2)_2-NH_3]_2SnBr_{5.65}Cl_{0.35}$ (2) cast films from water solution; $\lambda_{ex} = 350$ nm.