Supporting Information

A dual-functional matrix with high absorption and electrocatalysis to suppress shuttle effect of lithium-selenium batteries

Zihao He¹, Lan Yang¹, Hao He¹, Wenyang Lei¹, Ting Yu¹, Qiushi Huang

², Hongxin Liao ³, Xuebu Hu $^1\square$

¹ College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
² College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
³ Chongqing Hongyu Precision Industry Group Co. Ltd, Chongqing 402760, China
* Corresponding Author
Email address: xuebu@cqut.edu.cn (Xuebu Hu)

Fig. S1 TEM image of the Se/CoTe₂-MD.

Fig. S2 High-resolution C 1s XPS spectra of the CoTe₂-MD.

Fig. S3 (a) Full-scan XPS spectra and the high-resolution spectra of (b) Co 2p, (c) Te 3d, (d) N 1s (e) C 1s and (f) Se 3d of the Se/CoTe₂-MD.

Fig. S4 TG curve of the CoTe₂-MD in air atmosphere.

Fig. S5 Raman spectra of the CoTe₂-MD and Co-MD.

Fig. S6 (a) Charge/discharge curves of the CoTe₂-MD electrode at 0.1 C and CV curve of the CoTe₂-MD electrode at 0.1 mV/s.

Fig. S7 Self-discharge profile shown after resting 4-8-12-16-20-24 h and respective recovery cycle for Se/CoTe₂-MD and Se/Co-MD electrodes.

Fig. S8 XRD patterns of the Se/CoTe₂-MD electrode before and after

cycles.

	Discharge capacity(cycle		
Matrix	number)		Rate capacity(rate, cycle number)
	0.5C	2C	
CoTe ₂ -MD	540.4(1st) 454.1(200th)	451.2(1st) 377.1(100th) 250.0(500th)	$592.9(0.2\text{C},10\text{th}) \rightarrow 538.7(0.5\text{C},20\text{th}) \rightarrow$
			$515.8(1C, 30th) \rightarrow 457.3(2C, 40th) \rightarrow$
			$509.9(1C, 50th) \rightarrow 526.9(0.5C, 60th) \rightarrow$
			539.0(0.2C, 70th)
MCM ^[S1]	513.0(1st) 300.0(100th)	-	$455.0(0.5\text{C},10\text{th}) \rightarrow 400.2(1\text{C},20\text{th}) \rightarrow$
			$375.6(2C, 30th) \rightarrow 320.0(5C, 40th) \rightarrow$
			291.0(0.5C, 50th)
HPCA [52]			$425.0(0.5C,5th) \rightarrow 400.0(1C, 10th) \rightarrow$
	587.0(1st)	-	$352.3(2C, 15th) \rightarrow 303.2(3C, 20th) \rightarrow$
	367.0(50th)		$270.3(5C, 25th) \rightarrow 305.7(0.5C, 30th) \rightarrow$
			393.6(0.2C, 35th)
CTAB- MWCNT ^[S3]			$586.0(0.2C, 10th) \rightarrow 399.0(0.5C, 20th) \rightarrow$
	570.4(1st)	$215.7(1C, 30th) \rightarrow 69.5(2C, 40th) \rightarrow$	
	230.8(200th)	230.8(200th)	$205.6(1C, 50th) \rightarrow 306.9(0.5C, 60th) \rightarrow$
			397.8(0.2C, 70th)
CMC ^[S4]	517.6*(1st) 257.6*(200th)	378.9*(1st) 166.3(460th)	$420.4(0.2C,10th) \rightarrow 352.6^*(0.5C,20th) \rightarrow$
			$302.6*(1C, 30th) \rightarrow 250.2*(2C, 40th) \rightarrow$
			$218.1(5C,50th) \rightarrow 242.3*(2C, 60th)$
			\rightarrow 292.9*(1C, 70th) \rightarrow 310.3*(0.5C, 60th) \rightarrow
			331.5(0.2C, 70th)
TiO ₂ ^[S5]	481.0(1st)		
	158.0(50th)	-	-
MnO ₂ ^[S6]		312.0(1st)	
	-	273.0(100th)	-
α-MoO ₃ ^[S7]			$569.4(0.2C,10th) \rightarrow 456.7(0.5C,20th) \rightarrow$
	652.3(1st)	520.3(1st)	$371.9(1C, 30th) \rightarrow 318.2(2C, 40th) \rightarrow$
	355.6(200th)	315.5(100th)	$398.7(1C, 50th) \rightarrow 458.4(0.5C, 60th)$
			\rightarrow 440.6 [*] (0.2C, 70th)

batteries using different matrix.

* Means the values from the images in the references.

References

- [S1] L. Liu, Y. Wei, C. Zhang, et al, Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping, *Electrochimica Acta*, 2015, 153, 140-148.
- [S2] S. Jiang, Z. Zhang, Y. Lai, et al, Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium– selenium batteries with high rate performance and cycling stability, *Journal of Power Sources*, 2014, 267, 394-404.
- [S3] R. Mukkabla, S. Deshagani, M. Deepa, et al, Carbon black free Selenium/CTAB decorated carbon nanotubes composite with high selenium content for Li-Se batteries, *Electrochimica Acta*, 2018, 283, 63-74.
- [S4] T. Liu, M. Jia, Y. Zhang, et al, Confined selenium within metalorganic frameworks derived porous carbon microcubes as cathode for rechargeable lithium-selenium batteries, *Journal of Power Sources*, 2017, 341, 53-59.
- [S5] Z. Zhang, X. Yang, X. Wang, et al, TiO₂-Se composites as cathode material for rechargeable lithium-selenium batteries, *Solid State Ionics*, 2014, 260, 101-106.
- [S6] N. Angulakshmi, R. S. Kumar, M. A. Kulandainathan, et al, Composite polymer electrolytes encompassing metal organic frame

works: a new strategy for all-solid-state lithium batteries, *The Journal* of *Physical Chemistry C*, 2014, **118**, 24240-24247.

[S7] K. W. Wu, J. Wang, C. S. Xu, et al, Hollow spherical α-MoO₃: an effective electrocatalyst of polyselenides for lithium-selenium batteries, *Acs Applied Energy Materials*, 2021, 4, 10203-10212.