Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

SUPPORTING INFORMATION

Drug encapsulation and release with a nonionic amphiphilic calix[4]pyrrole

Mana Mirabolghasemi,^a Necla Bektas,^a Buse Sancakli,^b Aydan Dag,^c and Abdullah Aydogan*^a

^a Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye

^b Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul 34093, Türkiye

^c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Türkiye

aydoganab@itu.edu.tr

Fig S1. ¹H NMR (500 MHz) spectrum of mPEG-COOH recorded in CDCI₃.

Fig S2. ¹³C NMR (126 MHz) spectrum of mPEG-COOH recorded in CDCl₃.

Fig S3. ¹H NMR (500 MHz) spectrum of C4P-PEG recorded in CDCI₃.

Fig S4. ¹H NMR (500 MHz) spectrum of C4P-PEG recorded in D₂O.

Fig S5. ¹³C NMR (126 MHz) spectrum of C4P-PEG recorded in CDCI₃.

Fig S6. HR-ESIMS spectrum of C4P-PEG.

Fig S7. ¹H NMR spectra (500 MHz) of (a) DOX, (b) C4P, (c) C4P + DOX, (d) C4P-PEG + DOX, and (e) C4P-PEG recorded in DMSO-*d*₆.

FTIR Spectra

Fig S8. Stacked FTIR spectra of DOX, C4P, C4P+DOX, C4P-PEG, and C4P-PEG+DOX.

UV-Vis Spectra

Fig S9. (a) UV-vis spectra of DOX in DMSO at varying concentrations and (b) the corresponding calibration curve generated from the absorbance values at 593 nm.

Fig S10. UV-vis spectra of C4P-PEG, DOX (before drug loading) and C4P-PEG-DOX (after drug loading).

Fig S11. TEM image of C4P-PEG showing the selected aggregates (252 points) for the calculation of size

distribution.

Fig S12. Size distribution of C4P-PEG based on the data obtained from Fig. S11.

Fig S13. TEM image of C4P-PEG-DOX.

Fig S14. Size distribution of C4P-PEG-DOX based on the data obtained from Fig. S13.

Binding Constant Determination and NOESY Analysis

To determine the stoichiometry and binding constant between calix[4]pyrrole core of **C4P-PEG** and DOX·HCI (through Cl⁻ binding), ¹H NMR titrations were performed in DMSO-*d6* solutions which had a constant concentration of **C4P-PEG** (6.28 mM) and varying concentrations of DOX·HCI (Fig S16). By a non-linear curve-fitting method, the association constant between **C4P-PEG** and Cl⁻ anion of DOX·HCI was determined to be $1.55 \times 10^3 \pm 148 \text{ M}^{-1}$ by monitoring the pyrrole-CH protons of **C4P-PEG** (Fig. S15 and Fig. S16). The complexation stoichiometry was found to be 1:1 as shown in Fig. S17.

Fig S15. Partial ¹H NMR spectra (500 MHz, DMSO-*d*6, 25 °C) of **C4P-PEG** (6.28 mM) upon addition of DOX·HCl at 0.00, 0.98, 1.98, 3.45, 4.75, 5.82, 6.79, 7.92, 8.83, 9.58, 10.20, 10.74, 11.59, 12.24, 12.76 mM concentrations from bottom to top.

Fig S16. Chemical shift changes of pyrrole CH protons (initially at 5.68 ppm) belonging to **C4P-PEG** (6.28 mM) upon incremental addition of DOX·HCI. The red solid line was obtained from a non-linear curve fitting using the equation provided under the figure.

Fig S17. Molar ratio plot for the interaction of C4P-PEG with DOX-HCI, indicating a 1:1 stoichiometry.

Fig S18. NOESY NMR spectrum of C4P-PEG + DOX·HCI (1:1) recorded in DMSO-*d6* containing 1.5% (wt) H₂O. This spectrum shows the concurrent complexation of C4P core of C4P-PEG with –NH₃⁺ unit of DOX·HCI (see Fig S7 for peak shift changes in the case of NH···CI⁻ interaction) through cation–π interaction.

DLS and Zeta Potential Measurements

Fig S19. Correlation coefficient plots for C4P-PEG and C4P-PEG-DOX during DLS measurements.

Fig S20. (a) Phase plot and (b) zeta potential distribution of C4P-PEG.

Fig S21. (a) Phase plot and (b) zeta potential distribution of C4P-PEG-DOX.

Fig S22. DOSY NMR spectrum of **C4P-PEG** + DOX·HCI (1:1) recorded in D₂O (2.69 mM, 25 °C), showing the free (big trace) and encapsulated (small trace) DOX·HCI moieties.