Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Size-dependent d⁰ room temperature ferromagnetism in undoped

In₂S₃ nanoparticles

Yi Liu^{a,}* and Liyong Du^b

^aSchool of Physics and Optoelectronic Engineering, Hainan University, Haikou

570228, People's Republic of China.

^bDepartment of Materials and Chemical Engineering, Taiyuan University, Taiyuan

030032, People's Republic of China.

*E-mail address: liuyi@hainanu.edu.cn

Fig. S1 XPS spectra of the sample S2: (a) survey scan, (b) high-resolution spectrum for S 2p, (c) high-resolution spectrum for In 3d.

Fig. S2 The absorption spectra of samples (a) S1 and (b) S2.

The absorption spectrum of the sample S1 shows a step-like shape, which is attributed to the valence-to-conduction band transition and is consistent with the previously published studies.^{1, 2} There is a significant blue shifted compared with bulk In₂S₃ (λ_{max} =601 nm, E_g=2.07 eV), which can be ascertained the quantum confinement effect.³ The sample S2 displays weaker light absorption ability than the sample S1.

Fig. S3 Five calculation configurations: (a) an ideal system with no defects $(In_{32}S_{48})$, (b) a system with one S vacancy $(In_{32}S_{47})$, (c) a system with one In interstitial $(In_{33}S_{48})$, (d) a system with one In vacancy $(In_{31}S_{48})$, (e) a system with two In vacancies $(In_{30}S_{48})$.

Fig. S4 TDOS and PDOS of (a) $In_{32}S_{48}$ and (b) $In_{32}S_{47}$ configurations. The Fermi energy levels are indicated by black dashed lines.

Fig. S5 Spin-density distribution and spin-density map of (a) $In_{31}S_{48}$ and (b) $In_{30}S_{48}$

models.

References

- 1. K. H. Park, K. Jang and S. U. Son, *Angew. Chem.*, 2006, **118**, 4724-4728.
- 2. W. Du, J. Zhu, S. Li and X. Qian, Cryst. Growth Des., 2008, 8, 2130-2136.
- 3. S. K. Batabyal, S. E. Lu and J. J. Vittal, *Cryst. Growth Des.*, 2016, **16**, 2231-2238.