Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Enhanced photocatalytic hydrogen activities of CoV-LDH/ZnIn₂S₄

nanocomposites

Qianchen Ou^{a,b†}, Yuejie Jia^{b,†}, Xiaoxia Yang^c, Ningwen Zhang^b, Shuaikang Qi^b, Hanfeng Lu^a,

Liping Guo^b, Hongmei Wang^{b,*}, Jun Tan^{b,*}

^a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
^b Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
^c Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing 314001, China

[†]These authors contributed equally to this work.

*Corresponding authors (E-mail: hongmei256@163.com (Wang H); E-mail: tanjunzjxu@126.com (Tan J))

Catalysts	Light source	Sacrificial reagent	H ₂ yield (μmol·g ⁻¹)	Ref.
2.0%-CoV-LDH/ ZnIn ₂ S ₄	λ>400 nm	Na ₂ SO ₃ /	1397.3	This work
	300 W Xe	Na ₂ S		
CoS/ZnIn ₂ S ₄	λ>350 nm	TEOA	879	[S1]
	300 W Xe			
SiO ₂ /ZnIn ₂ S ₄	sunlight	Na ₂ SO ₃ / 796 Na ₂ S	796	[S2]
	Sumpir		,,,,	
CuInS ₂ /ZnIn ₂ S ₄	λ>420 nm	Na ₂ SO ₃ /	1168	[S3]
	300 W Xe	Na ₂ S		
AgIn ₅ S ₈ /ZnIn ₂ S ₄	λ>420 nm	Na ₂ SO ₃ /	949.9	[S4]
	300 W Xe	Na ₂ S		
$Ti_3C_2/ZnIn_2S_4$	λ>420 nm	TEOA 978.7	978 7	[85]
	300 W Xe		570.7	
MoS ₂ -RGO/ ZnIn ₂ S ₄	λ>420 nm 300 W Xe	lactic acid	425.1	[S6]

Table S1 Hydrogen production of ZnIn₂S₄-based photocatalysts

Table S2 Apparent quantum efficiency of 2.0%-CoV-LDH/ZnIn₂S₄

Figure S1 (a-b) Mott-Schottky plots of the CoV-LDH and ZIS CoV-LDH and ZIS samples. (c) Band structure of CoV-LDH and ZIS.

References

- [S1]X Xi, Q Dang, G Wang, et al. ZIF-67-derived flower-like ZnIn₂S₄@CoS₂ heterostructures for photocatalytic hydrogen production[J]. *New J. Chem.*, 2021, 45(43): 20289–20295.
- [S2] A R Gunjal, Y A Sethi, U V Kawade, et al. Unique hierarchical SiO₂@ZnIn₂S₄ marigold flower like nanoheterostructure for solar hydrogen production[J]. RSC Adv., 2021, 11(24): 14399–14407.

- [S3]X Guo, Y Peng, G Liu, et al. An efficient ZnIn₂S₄@CuInS₂ core-shell p-n heterojunction to boost visible-light photocatalytic hydrogen evolution[J]. J. Phys. Chem. C, 2020, 124(11): 5934–5943.
- [S4]Z Guan, Z Xu, Q Li, et al. AgIn₅S₈ nanoparticles anchored on 2d layered ZnIn₂S₄ to form 0d/2d heterojunction for enhanced visible-light photocatalytic hydrogen evolution[J]. *Appl. Catal. B Environ.*, 2018, 227: 512–518.
- [S5] W Huang, Z Li, C Wu, et al. Delaminating Ti₃C₂ mxene by blossom of ZnIn₂S₄ microflowers for noble-metal-free photocatalytic hydrogen production[J]. J. Mater. Sci. Technol., 2022, 120: 89–98.
- [S6]Z Guan, P Wang, Q Li, et al. Constructing a ZnIn₂S₄ nanoparticle/MoS₂-RGO nanosheet 0d/2d heterojunction for significantly enhanced visible-light photocatalytic H₂ production[J]. *Dalton Trans.*, 2018, 47(19): 6800–6807.