Electronic Supplementary Information

Portable smartphone platform based on fluorescent carbon quantum

dots derived from biowaste for on-site detection of permanganate

Li Xu^a, Chenfei Zhu^a, Xiaogang Duan^b, Lei Bao^a, Guanglin Wang^a, Wei Fu^{a,*}

^a Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, West Anhui University, Lu'an 237012, PR China.

^b Sichuan Yalian Hydrogen Technology Co., Ltd, Chengdu 610000, PR China.

* Corresponding author.

E-mail address: w-ful7@tsinghua.org.cn

Fig. S1 Size distribution of CQDs (Average diameter= 3.14 ± 0.71 nm)

Fig. S2 XPS survey scan of CQDs

Fig. S3 FT-IR spectrum of CQDs.

Fig. S4 PL spectrum of CQDs and Rhodamine B

Fig. S5 UV-vis spectrum of CQDs and Rhodamine B (RhB)

Table S1. Quantum yield of the CQDs.

Sample	Abs. at 360nm	PL Integrated intensity	Refractive index of solvent (n)	PLQY (%)
RhB	0.0246	38790.29	1.33	31
CQDs	0.0265	17330.45	1.33	12.86

Quantum dots	QY (%)	References
Ionic liquids modifed carbon quantum dots (ILs-CQDs)	18.13	[1]
Carbon quantum dots (CQDs)	11.37	[2]
Carbon quantum dots (CQDs)	16.2	[3]
Carbon quantum dots (CQDs)	10.36	[4]
N-doped carbon quantum dots (CQDs)	9	[5]
Nitrogen doped carbon quantum dots (N-CQDs)	12.33	[6]
Nitrogen doped carbon quantum dot (N-CQDs)	14.81	[7]
Nitrogen doped carbon quantum dot (N-CQDs)	9.3	[8]
Carbon quantum dots (CQDs)	3.5	[9]
Lotus stem-derived carbon dots (LS-CQDs)	0.44	[10]
Carbon quantum dots (CQDs)	14.12	[11]
CQDs	12.86	This work

 Table S2. A comparison of fluorescence quantum yields (QY) exhibited by CQDs.

Fluorescent probes	LOD	References	
ILs-CQDs	0.09 µM	[1]	
CQDs	0.06 µM	[4]	
Luminescent lanthanide metal-organic	2.52 uM	[10]	
frameworks (Ln-MOFs)	3.33 µlvi		
Red emission carbon dots (RCDs)	14.5 nM	[13]	
Manganese-doped carbon dots (Mn-CDs)	0.66 µM	[14]	
Covalent organic framework (COF)	0.01 mM	[15]	
[Zn(2,2'-bipy)(ppa)(H ₂ O) ₂]·2H ₂ O	6.73 μM	[16]	
[Co(NPDC)(bpee)]·DMF·2H ₂ O	1.50 μM	[17]	
${[Eu_2Na(Hpdbb)(pdbb)_2(CH_3COO)_2] \cdot 2.5DMA}_n$	5.99 µM	[18]	
Carbon nanospheres (CNs)	0.72 μM	[19]	
CQDs	3.31 µM	This work	

Table S3. Comparison of the performance of different methods for MnO_4^- detection.

Fig. S6 Relationship between fluorescence intensity and different MnO_4^- concentrations.

Fig. S7 Linear plots of different concentrations of MnO_4^- versus F_0/F .

Fig. S8 The relationship between RGB values and MnO_4^- concentrations

Sample	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
Tap water	0	NF	-	-
	40	39.35	98.38	4.02
	70	68.34	97.63	4.94
	80	82.78	103.48	3.56
River water	0	NF	-	-
	40	39.76	99.40	3.69
	70	68.73	98.19	4.27
	80	84.01	105.01	5.19

Table S4. Recoveries of MnO_4^- in water samples based on smartphone sensing platform (n = 3).

Note: NF=Not found

References

- [1] Y. Sun, S. Ma, H. Wang, H. Wang, M. Gao and X. Wang, *Anal. Bioanal. Chem.*, 2023, 415, 4753-4766.
- [2] P. Surendran, A. Lakshmanan, G. Vinitha and G. Ramalingam, Luminescence, 2020, 35, 196-202.
- [3] X. Hu, Y. Li, Y. Xu, Z. Gan, X. Zou, J. Shi, X. Huang, Z. Li and Y. Li, Food Chem., 2021, 339, 127775.
- [4] P. Wang, J. Wang, T. Liu, Z, Sun, M. Gao, K. Huang and X. Wang, *Microchem. J.*, 2022, 178, 107374.
- [5] Z. Zhai, J. Xu, T. Gong, B. Cao, K. Cui, L. Hou and C. Yuan, Chem. Commun., 2022, 140, 109387.
- [6] S. Ding, P. Tan, J. Wen, T. Li and W. Wang, Sci. Total Environ., 2022, 814, 152745.
- [7] S. Patel, K. Shrivas, D. Sinha, I. Karbhal and T. K. Patle, Spectrochim. Acta A, 2023, 299, 122824.
- [8] R. Zhou, C. Chen, J. Hu, X. Liao, H. Hu, Z. Tong, J. Liang and F. Huang, *Ind. Crop. Prod.*, 2022, 188, 115705.
- [9] S. Ding, Y. Gao, B. Ni and X. Yang, Inorg, Chem, Commun., 2021, 130, 108636.
- [10] A. Qureashi, A. Pandith, A. Bashir and L. Malik, Anal. Methods, 2021, 13, 4756.
- [11] K. Kasinathan, S. Samayanan, K, Marimuthu and J-H, Yim, Appl. Surf. Sci., 2022, 601, 154266.
- [12] Z. Yu, H. Zhao, Z. Ling, J. Zhou and X. Zhao. Inorg Chim Acta., 2022, 543, 121159.
- [13] D. Chang, Z. Zhao, J. Feng, Y. Xin, Y. Yang and L. Shi, Sensor. Actuat. B-Chem., 2021, 349, 130774.
- [14] X. Chu, G. Ning, Z. Zhou, Y. Liu, Q. Xiao and S. Huang, Microchim. Acta, 2020, 187, 1-11.
- [15] M. Huang, J. Chong, C. Hu and Y. Yang, Inorg. Chem. Commun., 2020, 119, 108094.
- [16] K. Wang, M. Zhu, S. Ma, X. Li, M. Zhang and E. Gao, Polyhedron, 2019, 166, 60-64.
- [17] F. Li, Y. Hong, K. Zuo, Q. Sun and E. Gao, J. Solid State Chem., 2019, 270, 509-515.
- [18] S. Xu, J. Shi, B. Ding, Z. Liu, X, Wang, X. Zhao and E. Yang, Dalton Trans., 2019, 48, 1823-1834.
- [19] X. Dong, M. Wang and Y. Tang, Spectrochim. Acta A, 2022, 271, 120886.