Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information (SI)

Multi-stimuli Responsive Carbazole based Low Molecular Weight Gelator: Nanomolar Sensing of Cyanide Ions and Electrochromic Switching in Real-time

Celin Rooth, Swatilekha Pratihar, Yuvaraj Palani, Anandhakumar Sukeri, Edamana Prasad

Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India

Table of contents

Figure SI-1: ¹ H NMR spectrum of CBG in DMSO-d ₆ 2
Figure SI-2: ¹³ C NMR spectrum of CBG in DMSO-d ₆
Figure SI-3: HRMS of CBG
Figure SI-4: Lippert-Mataga plot
Figure SI-5: DFT Calculated FMOs of CBG
Figure SI-6: DLS traces of CBG in THF/H ₂ O mixtures at different water fractions4
Figure SI-7: SEM images of aggregates at lower water fractions
Figure SI-8: DLS traces at two different scattering angles and its SEM image
Figure SI-9: CBG gel in Dioxane-H ₂ O mixture
Figure SI-10: FT-IR spectra of CBG in its gel, solution and solid state
Figure SI-11: Absorption spectra changes upon addition of various anions
Figure SI-12: Stern-Volmer plot and determination of detection limit of CBG for CN ⁻ sensing
Figure SI-13: Sensing studies in solid and gel state
Figure SI-14 : SEM image of CBG gel before and after addition of CN ⁻ 9
Figure SI-15: Sensing of CN ⁻ in real water sample10
Figure SI-16: Yellow colour of the solution that appeared at 1.7 V12
Figure SI-17: CV obtained when FTO plate is used as the working electrode
Figure SI-18: CBG gel sandwiched between FTO plates and CV in gel state12
Table SI-1: Table containing the details of gelation test
Table SI-2: Comparison table of literature reports of cyanide sensing
Scheme SI-1: Deprotonation followed by the resonance stabilization

References1	3
-------------	---

¹H NMR Spectrum

Figure SI-1. ¹H NMR spectrum of CBG in DMSO-d₆.

Figure SI-2. ¹³C NMR spectrum of CBG in DMSO-d₆.

HRMS

Figure SI-3. HRMS of CBG.

Figure SI-4. Lippert-Mataga plot of CBG.

Figure SI-5. a) HOMO and b) LUMO orbitals in the optimized ground-state structure of CBG.

Figure SI-6. DLS traces of CBG in THF/H₂O mixtures at $f_w = 10\%$, 30%, 50%, 60%, 70 %, 80 %, 90 %, 99%.

Figure SI-7. SEM images of a)10%, b) 30%, c) 50%, d) 60% water fractions

Figure SI-8. a) DLS traces of CBG ($f_w=90\%$) in THF/H₂O mixtures at two different scattering angles (13°, 90°) and b) SEM image of $f_w=90\%$ (90:10).

Figure SI-9. CBG gel in Dioxane-H₂O mixture.

Entry	Solvent	Phase (CGC)	
1	CHCl ₃	S	
2	DCM	S	
3	THF	S	
4	DMSO	S	
5 DMF		S	
6	Dioxane	S	
7	ACN	Ι	
8	Hexane	Ι	
9	DMF- $H_2O(1:1)$	G (5 mg)	
10	Dioxane- $H_2^O(1:1)$	G (5 mg)	

 Table SI-1. Table containing the details of gelation test.

(S: soluble, I: Insoluble G: gel formed)

Figure SI-10. FT-IR spectra of CBG in its gel, solution and solid state

Figure SI-11. Absorption spectra changes upon addition of various anions as their tetra butyl ammonium salts.

Figure SI-12. a) Stern-Volmer plot of CBG for CN⁻ sensing and b) determination of detection limit of CBG for CN⁻ sensing.

Figure SI-13. a) Emission spectra of CBG in its powder state and after treatment with CN⁻b) Decrease in the emission intensity of CBG gel with increase in concentration of aq. CN⁻ and c) determination of detection limit of CBG gel for CN⁻ sensing.

Figure SI-14. SEM image of CBG gel before and after addition on CN-

Figure SI-15. Decrease in fluorescence intensity with increase in concentration of CN⁻ in tap water.

Scheme SI-1. Deprotonation upon cyanide addition followed by the resonance stabilization.

Reference	Detection limit	1	Medium	
		Solution	Solid	Gel
1	0.28μΜ	Yes	-	-
2	20nM	Yes	-	-
3	67.4 nM	Yes	-	-
4	0.0153µM	Yes	-	-
5	51 nM	Yes	-	-
6	11nM	Yes	-	-
7	0.427µM	-	Yes	-
8	39.3 nM	Yes	Yes	-
9	0.5μΜ	Yes	Yes	-
10	3.02µM	Yes	-	Yes
Present study	1.28nM	Yes	Yes	Yes

Table SI-2. Comparison table of literature reports of cyanide sensing

Figure SI-16. Yellow colour of the solution that appeared at 1.7 V.

Figure SI-17. CV obtained when FTO plate is used as the working electrode.

Figure SI-18. a) CBG gel sandwiched between FTO plates and b) CV in gel state.

References

- K. Y. Ryu, J. J. Lee, J. A. Kim, D. Y. Park and C. Kim, *RSC Adv*, 2016, 6, 16586– 16597.
- H. W. Zhao, G. Wu, X. Y. Sun, J. Bin Chao, Y. Q. Li, L. Jiang and H. Han, *J Lumin*, 2018, 201, 474–478.
- 3 Q. Zou, F. Tao, H. Wu, W. W. Yu, T. Li and Y. Cui, *Dyes Pigm*, 2019, 164, 165–173.
- 4 J. H. Park, R. Manivannan, P. Jayasudha and Y. A. Son, *J Photochem Photobiol A Chem*, 2020, **397**.
- 5 Z. H. Zheng, Z. K. Li, L. J. Song, Q. W. Wang, Q. F. Huang and L. Yang, *Sensors*, 2017, **17**, 405.
- S. Pramanik, V. Bhalla and M. Kumar, ACS Appl Mater Interfaces, 2014, 6, 5930–
 5939.
- 7 Z. M. Dong, H. Ren, J. N. Wang and Y. Wang, *Microchemical Journal*, 2020, 397
- 8 S. Manickam and S. K. Iyer, *RSC Adv*, 2020, **10**, 11791–11799.
- 9 C. Nandhini, P. S. Kumar, K. Poongodi, R. Shanmugapriya and K. P. Elango, J Mol Liq, 2021, 327.
- H. Yao, J. Wang, S. S. Song, Y. Q. Fan, X. W. Guan, Q. Zhou, T. B. Wei, Q. Lin and
 Y. M. Zhang, *New J Chem*, 2018, 42, 18059–18065.